Process for the manufacture of acyclovir pro-drugs

Field of the invention

The present invention is related to the area of pharmaceuticals and concerns a new method for the manufacture of acyclovir pro-drugs, using green solvents.

Background of the invention

Depending on the portal of entry Herpes virus are classified in Neurotrophic (the infection in human body is through the nervous system), and Lymphotrophic (the infection is through the lymphatic system). Herpes simplex virus (type 1 and 2: HSV-1 and HSV-2) and Varicella zoster (VZV) are among the neurotrophic virus while Human citomegalovirus (HCMV), Epstein-Barr virus (EBV) and Human herpes virus (HHV-6, HHV-7 and HHV-8) are among the lymphotrophic virus.

Herpes virus is an ubiquitous organism that cause infections in human population in the entire world. The overall incidence of herpes zoster in Europe is approximately 3 per 1000 people per year and more than 10 per 1000 per year in those aged > 80 years. The risk in a lifetime of being infected by herpes zoster is estimated at 10-20% and more than 50% in those aged > 80 years. Herpes simplex virus (HSV) infections are among the most common diseases in humans, with an estimated 60-95% of the adult population being infected by at least one of them. (HSV-1 is more frequently associated with oral and oro-labial diseases, whereas HSV-2 is more frequently associated with genital diseases.

Moreover, HSV is the most common cause of corneal blindness in the United States and it is also necessary to take into account the detrimental impact of pain on the patients' quality of life and the loss of productivity. The economic impact of Herpes zoster and post-herpetic neuralgia is largely underestimated in Europe. The high cost of healthcare in elderly patients is a serious concern in many countries. Since Herpes zoster and its complications are largely a disease of the elderly, the burden on healthcare resources will increase as the elderly population increases as shown by the census depicting a dramatic increase in the > 65 years age
group up to the year 2025. Although hospitalization is a minor expense as for the total cost of the care for this disease, the annual cost of hospitalization for example in Spain was estimated at 7 M€.

Acyclovir, a synthetic guanosine analog inhibits viral DNA replication without harming the host. Acyclovir is phosphorylated by the viral enzyme thymidine kinase, which is subsequently converted into triphosphate by cellular kinases in order to compete with normal deoxynucleoside triphosphate as a substrate for the viral DNA polymerase. Acyclovir shows 30-50 times more affinity for viral DNA polymerase than for the host’s. Also, in terms of toxicity, Acyclovir has demonstrated its safety for more than 30 years.

However, Acyclovir’s success against HSV and VZV is limited by both its low oral bioavailability (15-20%) and low life time ($t_{1/2} = 2.5-3$ hours). These two factors have made necessary to increase Acyclovir oral dose and administration frequency as well, in order to achieve good clinical results. Moreover, Acyclovir low water solubility ($\approx 0.2\%$ at 25°C) is an inconvenient because it is impossible to use an Acyclovir formulation, for example, for intramuscular injection or as ophthalmic drops for ocular administration. In spite of the many research efforts, no good topic formulations of acyclovir have been obtained due to the impossibility of acyclovir to cross the skin corneal strata and reach the epidermis basal layer where the viral infection is present. To overcome this hindrance, different pro-drugs have been described without decisive results. As pro-drugs, one can cite: Valaciclovir, Penciclovir, Famciclovir, Ganciclovir and Valganciclovir. All these compounds are used by oral administration.

Therefore, topical application is a much more promising way of administrating Acyclovir to the patient. However, cosmetic or pharmaceutical formulations in general, as well as the employed solvents in particular have to fulfil some serious requirements:

- The compositions/solvents must show a sufficient solubility for Acyclovir;
- The compositions/solvents need to improve stability of Acyclovir;
- The solvents need to be toxicologically safe.
Typically, solvents like toluene, DMF or DMSO are used to produce Acyclovir prodrugs, since they show a high solubility for the product and accelerate the speed of the reaction. However, these solvents are toxic and therefore need to be removed completely (less than 5 ppm). This factor is of course connected with high technical efforts and expenses.

For example, **WO 07/147052** (Dr. Reddy’s Lab. Ltd.) discloses a topical composition comprising acyclovir, a crystallisation inhibitor, a film-forming agent and a volatile solvent, like e.g. acetone. Although it is pointed out that the solvents evaporate when the composition is brought to skin, the formulations do not fulfil the safety obligations for pharmaceutical products. In addition, the solvents disclosed in the state of the art do not show an improvement in the stability of the active agent.

Therefore, the problem underlying the present invention is to modify existing/current processes for making Acyclovir pro-drugs by substituting conventional toxic solvents by non-toxic alternatives in order to avoid their removal from the composition. In addition, the non-toxic solvents used in this invention can be used in the topical formulation of acyclovir pro-drugs.

Detailed description of the invention

The present invention claims a process for making acyclovir pro-drugs by esterification of acycloguanosine (Acyclovir) with an acylation agent, which is characterised in that the reaction is conducted in the presence of a solvent which is chosen from the group of dialkyl amides.

It has been observed that dialkyl amides are useful solvents for the esterification in the manufacture of Acyclovir pro-drugs to achieve yields similar to those obtained with conventional solvents like toluene, DMF or DMSO. Toluene and DMF are toxic in dermo-pharmacy applications and DMSO is a crystalline opacificant. The major advantage of the alternative new solvents proposed is that they are toxicologically safe. Therefore a complete separation from the product is not necessary. Moreover, the pro-drug dissolved in the dialkyl amide could be directly incorporated into the final composition of the topical formulation. For this reason the economy of the production could strongly improved.
Acyclovir pro-drugs

The chemical synthesis of acyclovir pro-drugs was described by Spector et al. [Biochem. Pharmacol. 32, p.2505-2509 (1983)]. These scientists described the deamination of 2,6-diamino-9-(2-hydroxyethoximethyl) purine catalyzed by adenosine deaminase to give acyclovir. Then, Krenitsky et al. [Proc. Natl. Acad. Sci. 81, p.3209-3213 (1984)] synthesized 6-desoxiacyclovir which showed a good oral absorption. This compound was then transformed later into acyclovir by the xantine oxidase catalyzed oxidation. Nevertheless, both prodrugs showed higher toxicity than acyclovir. Kim et al, [Biotechnol. Bioeng. 57(1), p. 121-125 (1998)] synthesized 6-fluoropurine and 2-amino-6-fluoro-9-(2-hydroxiethoximethyl)purine have showed interesting properties as pro-drugs to be used by oral administration. Gao et al. [Synthesis 3, p. 329-351 (2000)] synthesized several alkanoates of acyclovir using fatty acid anhydrides ranging from acetic to palmitic anhydride acid. The synthesis took place in 2 or 3 days with the highest yields around 80%, but with low chemo-selectivity because the amide in C-6 was obtained (5-12%). Both problems disturb the scale up of the synthetic procedure. Finally, lipases have been used as selective biocatalysts to obtain nucleoside esters by Ferrero et al. [Chem. Rev. 100 (12), p. 4319-4347, (2000)].

Acylating agents

The preparation of pro-drugs of Acyclovir requires an esterification step in which an acylation agent attacks the free terminal hydroxyl group of the acycloguanosine. The nature of the acylation is not critical for the invention, since the choice fully depends on the later application. Basically, said acylation agent can be

- a saturated or unsaturated, linear or branched monocarboxylic acid, having 1 to 22 carbon atoms, its chloride or anhydride, or
- a saturated or unsaturated dicaarboxylic acid having 2 to 36 carbon atoms, its chloride or anhydride.

Typical examples are acetic acid, propionic acid, butyric acid, capric acid, caprylic acid, caprinic acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, cetearic acid, oleic acid, elaidinic acid, linolic acid, linoleinic acid, conjugated linoleic acid, ricinoleic acid, 12-hydroxystearic acid, gadoleinic acid, arachidonic acid, erucic acid, behenic acid and their mixtures. Also useful are short chain hydroxy carboxylic acids, like e.g. lactic acid, glycolic acid or citric acid. Suitable examples for dicaarboxylic acids are malic acid, maleic acid, fumaric acid or adipic acid. Instead of the free acids it is useful to use their chlorides or prefera-
bly their anhydrides. The esterification takes place under conditions known to the ones skilled in the art. Usually, alkaline catalysts are added and the reaction conducted for about 12 to about 60, preferably about 24 to about 48 h at temperatures between about 15 to about 30 °C. Once the esterification is completed unreacted starting material is separated off either by distillation or – preferred – by washing with water.

Dialkyl amides

Dialkyl amides are useful as solvents according to the present invention, are water soluble and follow formula (I)

\[\text{R}^1\text{CO-NR}^2\text{R}^3 \]

(I)

in which \(\text{R}^1\text{CO} \) stands for a linear or branched, saturated or unsaturated, optionally hydroxy-substituted radical having 1 to 21 carbon atoms, and \(\text{R}^2 \) and \(\text{R}^3 \) independently from each other represent alkyl radicals having 1 to 6 carbon atoms. Typical examples of suitable dialkyl amides are diethylamides, dipropyl amides, dibutylamides, dipentylamides, methylethyl amides and preferably dimethyl amides based on saturated or unsaturated fatty acids like capric acid, caprylic acid, caprinic acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, cetearic acid, oleic acid, elaidinic acid, linolic acid, linoleinic acid, conjugated linoleic acid, ricinoleic acid, 12-hydroxystearic acid, gadoleinic acid, arachidonic acid, erucic acid, behenic acid and their mixtures. Also useful are amides based on short chain hydroxy carboxylic acids, like e.g. lactic acid, glycolic acid or citric acid. The preferred amides are dimethylamides based on \(\text{C}_6-\text{C}_{10} \) fatty acid, \(\text{C}_8-\text{C}_{10} \) fatty acid, lactic acid and their mixtures. Typically, the dialkyl amides are used in concentrations of about 0.1 M to about 5.0 M, preferably 0.2 M to 2.0 M and more preferably 0.5 M to 1.0 M – calculated on the total reaction mixture.

Industrial application

As described in the introduction acyclovir pro-drugs are efficiently used in dermopharmacy.
Examples

General Synthesis

The synthesis of acyclovir pro-drugs is conducted according to the following equation:

\[\text{Acyclovir} + \underset{n}{\text{O}} \underset{n}{\text{O}} \rightarrow \text{Acyclovir produg} \]

- \(n = 0 \) acetic acid
- \(n = 2 \) butanoic acid
- \(n = 4 \) Caproic acid
- \(n = 6 \) Capric acid
- \(n = 12 \) Myristic acid

Example 1

Synthesis of acyclovir hexanoate using N,N-dimethylamide of decanoic acid

Under argon atmosphere, acyclovir (25 mM) and hexanoic anhydride (75 mM) were placed in 1 200 ml 3-necked flask and 3.5 ml of the solvent N,N-dimethyldecanoamide were added. Once 2 mM of the catalyst 4-N,N-dimethylaminopyridine were added, the mixture was stirred at 25°C for 48h. Subsequently the reaction mixture was washed with water to remove the unreacted acid and anhydride. The yield obtained as the isolated product was 90%. The ester was characterized by NMR, IR and TLC.
Example 2
Synthesis of the ester of acyclovir and octanoic acid

The reaction was performed as described in the Example 1 but using instead of hexanoic anhydride octanoic anhydride (60 mM). The yield obtained as isolated product was 73%.

Example 3
Synthesis of acyclovir hexanoate using N,N,-dimethylamide of octanoic acid.

The reaction was performed as described in Example 1 but using N,N-dimethylamide of octanoic acid as the solvent. The obtained yield as isolated ester was 60%
1. A process for making acyclovir pro-drugs by esterification of acycloguanosine (Acyclovir) with an acylation agent, *characterised in* that the reaction is conducted in the presence of a solvent which is chosen from the group of dialkyl amides.

2. Process according to Claim 1, *characterised in* that said acylation agent is a saturated or unsaturated, linear or branched monocarboxylic acid, having 1 to 22 carbon atoms, its chloride or anhydride.

3. A process according to Claim 1, *characterised in* that said acylation agent is a saturated or unsaturated dicarboxylic acid having 2 to 36 carbon atoms, its chloride or anhydride.

4. A process according to any of the preceding Claims 1 to 3, *characterised in* that said dialkylamides follow general formula (I)

\[R^1 CO-NR^2 R^3 \] (I)

in which \(R^1 \)CO stands for a linear or branched, saturated or unsaturated, optionally hydroxysubstituted radical having 1 to 21 carbon atoms, and \(R^2 \) and \(R^3 \) independently from each other represent alkyl radicals having 1 to 6 carbon atoms.

5. A process according to any of the preceding Claims 1 to 4, *characterised in* that said dialkyl amides are based on \(C_6-C_{10} \) fatty acid, \(C_8-C_{10} \) fatty acid, lactic acid or their mixtures.
Summary

Suggested is a process for making acyclovir pro-drugs by esterification of acycloguanosine (Acyclovir) with an acylation agent, which is characterised in that the reaction is conducted in the presence of a solvent which is chosen from the group of dialkyl amides.