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Resumen en español  

 

Introducción 

 

Pequeños cambios a nivel atómico de la estructura, composición o estado electrónico 

de un material pueden producir sorprendentes efectos macroscópicos. En particular, en 

óxidos complejos basados en metales de transición, un gran número de fenómenos físicos 

como transiciones metal-aislante, magnetorresistencia colosal, superconductividad de alta 

temperatura o multiferroicidad son extremadamente sensibles a estas variaciones, que 

además dan lugar a complicados diagramas de fases (1–5). Por tanto, para abordar el 

estudio de sistemas con tales características, técnicas experimentales con capacidad de 

analizar materiales a escala atómica y en el espacio real se hacen indispensables. La 

microscopía electrónica de transmisión con barrido (STEM) combinada con la 

espectroscopia de pérdida de energía de electrones (EELS) forman una pareja con 

posibilidades únicas para estos estudios (6). Estas técnicas han crecido enormemente 

desde el desarrollo del corrector de aberración esférica en la última década (7–10). Los 

límites de resolución espacial se encuentran actualmente por debajo de la frontera de los 

0.5 Å (11–13), lo que nos permite estudiar átomos individuales dentro de un cristal (14). 

El uso de estos microscopios electrónicos corregidos supone una herramienta única para 

el estudio de sistemas complejos, más aún cuando la dimensionalidad se reduce a pocos 

nanómetros como en películas delgadas o interfaces. En estos casos, técnicas de 

difracción promediadas macroscópicamente pueden no ser suficientemente sensibles a los 

parámetros que rigen la física relevante y por tanto, la gran sensibilidad espacial de la 

microscopía electrónica supone una gran ventaja. El objetivo principal de este trabajo será 

precisamente establecer la conexión entre los mecanismos a nivel atómico y las 

propiedades físicas de una serie de sistemas basados en óxidos complejos cuidadosamente 

escogidos. Analizaremos en el espacio real fluctuaciones mínimas, casi por debajo del 

umbral de detectabilidad, responsables últimas del comportamiento macroscópico.  
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Resultados 

 

Con este fin, se han analizado los siguientes ejemplos paradigmáticos donde mínimas 

concentraciones de defectos puntuales o cambios estructurales locales difíciles de detectar 

afectan profundamente la respuesta macroscópica del sistema: 

 

 En primer lugar, se ha irradiado de forma controlada la superficie de óxidos 

complejos con el objetivo de inducir nuevas fases superficiales. Analizando los 

sistemas tratados mediante microscopía electrónica se ha observado cómo estos 

procesos producen la formación de una capa de TiO con alto grado cristalino en la 

superficie de monocristales de TiO2 (15) y como además dan lugar a estados 

metálicos superficiales en un aislante de bandas como es el SrTiO3 (16, 17). Este 

último fenómeno se produce por la formación y reorganización de vacantes de 

oxígeno inducidas mediante la irradiación que dopan electrónicamente los átomos 

de titanio superficiales dando lugar a la variación de la estructura de bandas en el 

sistema y en consecuencia a una transición aislante-metal. 

 

 Continuando este estudio en sistemas más complejos, se ha analizado como la 

reestructuración electrónica debida a la presencia de vacantes de oxígeno puede 

explicar el bloqueo observado en fronteras de grano de conductores iónicos, 

materiales que se emplean habitualmente en forma policristalina, y cuyo 

rendimiento se ve altamente afectado por dicho bloqueo de la conductividad 

iónica en dichas fronteras (147–149). La combinación de análisis mediante 

microscopía electrónica y cálculos DFT ha permitido desvelar una fuerte 

segregación de Y hacia las posiciones atómicas expansivas dentro de los núcleos 

de dislocación, además de la presencia de vacantes de oxígeno estructurales en la 

frontera. Estas variaciones composicionales producen una falta de estequiometria 

en una región de 5 Å a ambos lados de la frontera de grano, descartando la 

presencia de una amplia zona de carga espacial, como se suponía anteriormente 

(18–20). Además, los electrones cedidos por las vacantes de oxígeno son 

capturados en estados electrónicos accesibles en la frontera de grano, cargando 

eléctricamente la frontera y dando lugar a una barrera de potencial. De esta 

manera se ha explicado por primera vez el origen electroestático del bloqueo 
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iónico en fronteras de grano de materiales con importantes aplicaciones 

energéticas. 

 

 Se ha querido abordar también el estudio de pequeñas distorsiones estructurales, 

que son ahora detectables gracias a la gran sensibilidad espacial de la microscopía 

con corrector de aberraciones. En especial, se han analizado mediante 

espectroscopia EELS con resolución atómica y nuevos métodos de imagen con 

mayor sensibilidad a átomos ligeros, las distorsiones colectivas de la red de 

oxígeno en heteroestructuras de óxidos complejos y su relación con la aparición 

de estados físicos inexistentes en los materiales masivos. En superredes 

compuestas por el aislante de Mott LaMnO3 y el aislante de bandas SrTiO3 se ha 

encontrado una correlación entre rotaciones del octaedro de oxígenos (BO6) y la 

tensión epitaxial inducida al variar el espesor de las capas de titanato. Además, 

estas distorsiones se relacionan con la estabilización de una fase interfacial 

ferromagnética y conductora en el sistema (21, 22). Se ha extendido este análisis a 

sistemas más complejos como uniones túnel multiferroicas donde se ha obtenido 

la configuración de dominios ferroeléctricos midiendo las distorsiones en la red de 

oxígenos para cada celda unidad. Este estudio muestra una de las primeras 

observaciones experimentales de una configuración de dominios ferroeléctricos 

tipo head-to-head en capas de BaTiO3 ultra-delgadas. Las capas muestran una 

inversión de la polarización en la dirección fuera del plano mediante un gradiente 

de polarización muy pronunciado que alcanza unos valores de saturación cercanos 

al valor del material masivo en las interfases. Se ha encontrado además la 

presencia de carga de apantallamiento confinada a la pared de dominio que genera 

estados estados electrónicos accesibles en el interior de la barrera ferroeléctrica 

que proporcionan los mecanismos para estabilizar un tuneleamiento cuántico 

resonante. 
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Conclusiones 

 

A lo largo de esta tesis hemos mostrado como la microscopia electrónica con corrector 

de aberraciones es una técnica esencial para el análisis de materiales con resolución 

atómica. Hemos visto como pequeñas distorsiones estructurales o fluctuaciones en la 

composición química a nivel atómico pueden dan lugar a una gran variedad de fenómenos 

físicos macroscópicos. Actualmente podemos analizar pequeñas concentraciones de 

defectos, variaciones en la tensión epitaxial o fronteras de dominio ferroeléctricas con un 

nivel de detalle sin precedentes, estableciendo la conexión entre los mecanismos atómicos 

y las propiedades electrónicas del sistema. El continuo desarrollo de estas técnicas 

experimentales, sobrepasando los límites actuales en la resolución espacial y en energía 

hacen vislumbrar un futuro prometedor tanto para la ciencia de materiales como para la 

microscopía electrónica. Ahora, más que nunca, está a nuestro alcance la exploración de 

fronteras a escala atómica aún por revelar.  
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Chapter 1: Introduction 

 

 

 

Electronic reconstructions produced by atomic scale variations of the structure and 

composition in epitaxial interfaces between transition metal oxides (TMOs) can give rise 

to dramatic macroscopic physical effects (1–3). The presence of many competing 

interactions in these materials leads to complicated phase diagrams (4) and a wide range 

of physical phenomena, such as metal-insulator transitions, colossal magnetoresistance, 

high temperature superconductivity, multiferroicity and so on (4–8). In order to harness 

such challenging properties, experimental techniques with probes capable of studying 

materials in real space and down to the atomic scale are essential. Aberration corrected 

scanning transmission electron microscopy (STEM) combined with electron energy loss 

spectroscopy (EELS) techniques form a duet with unique capabilities along these lines 

(9). Being able to observe and explain the correlation between the atomic and the 

macroscopic worlds provides an exciting path towards the discovery of new physics and 

also for the development of devices based on novel physical functionalities. The work 

included in this thesis aims at establishing this link for a number of carefully chosen 

examples of oxides for energy, electronic or spintronic applications.  
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Interfaces between complex oxide materials 

 

Interfaces between TMOs pose a promising scenario to pursue novel physical effects 

due to the possibility of combining materials with very distinct physical properties in high 

quality heterostructures (2). Many of the aforementioned physical properties stem from 

the presence of electronic correlations in TMOs (8). The complex interactions between 

the spin, charge, lattice and orbital degrees of freedom give rise to a wide variety of 

electronic phases. The behavior of electrons in these materials cannot be described by 

one-electron band models, since each single electron is subject to unscreened Coulomb 

interactions with its neighbors (10). Thus, physical states that are not predicted by 

conventional band theories may arise. For example, some materials may present an 

insulating state for a partial occupancy of the energy bands for which band theory predicts 

the opposite. This effect happens when the Coulomb repulsion energy between electrons 

is strong enough to create an energy gap. This state is called a Mott insulator. 

 

 

Figure 1.1: Schematic illustrating how degenerate orbitals at the atomic level are splitted by a crystal 

field potential. The quantum mechanical d orbitals in the octahedral coordination of the O
2-

 are shown on 

the right. Adapted from ref. (8) 

 

Many TMOs present a perovskite crystalline structure, where the transition-metal ion 

is surrounded by six doubly negative charged oxygen ions. This arrangement produces a 

crystal field potential that lifts the degeneracy of the five-fold d orbitals of the TMO 
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(Figure 1.1). They are split into two-fold degenerate orbitals, with wave functions 

pointing to the negatively charged O
2-

 ions (       and       ) known as the eg orbitals 

and also into three-fold degenerate orbitals, with wave functions pointing between the O
2-

 

ions (dxy, dyz and dzx), called the t2g orbitals. The possible electronic configurations of 

these orbitals provide a material with the orbital degree of freedom (11, 12).  

 

 

Figure 1.2: Diagram exhibiting the symmetries and degrees of freedom of SCE that can be tailored at 

oxide interfaces. Adapted from ref. (3) 

 

The physical properties of TMO interfaces are usually conditioned by reconstructions 

of the charge, spin and orbital states at the atomic scale (Figure 1.2). In 2002 Ohtomo et 

al. (13) found a redistribution of the charge in a heterostructure composed of the band 

insulator SrTiO3 (STO) and the Mott insulator LaTiO3 (LTO). In this system, titanium 

atoms have different 3d band occupancies in each of the materials, 3d
2
 for STO and 3d

3
 in 

LTO. Hence, a rearrangement of interfacial charge occurs, with electrons leaking from 

the LTO to the STO. This phenomenon results in metallic conductivity even though the 

system is composed of two insulators. The symmetry breaking at interfaces may result in 

even more unexpected physical states. For example, the discovery of a superconducting 

two-dimensional electron gas at the interface between two wide-gap insulators (LaAlO3 

and SrTiO3) (14) has generated a great interest in the last years. This interface is an 

archetype of the “polar catastrophe” effect. Along the (001) direction, SrTiO3 is a 

stacking of nominally neutral (SrO)
0
 and (TiO2)

0
 planes while LaAlO3 is composed of 
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nominally charged (LaO)
+
 and (AlO2)

-
 planes. Therefore a polar discontinuity will always 

occur at a sharp interface. In order to avoid the diverging electrostatic energy, half an 

electron per two-dimensional unit cell is transferred from the LaAlO3 to the SrTiO3. This 

electronic reconstruction results in a doping of the Ti atoms, producing a conducting 

interfacial sheet and providing a promising scenario for future electronic applications. 

Spin and orbital reconstructions can also be produced in complex oxide heterostructures 

by the epitaxial strain resulting from the mismatch of the lattice parameters of the 

constituent materials. For example, tensile or compressive strain can induce Jahn-Teller 

distortions, where the orbital degeneracy is removed by favoring the in-plane (      ) or 

out-of-plane (      ) d orbitals (15, 16). Moreover, large epitaxial mismatches in oxide 

heterostructures can produce strong distortions in the lattice that affect greatly the 

properties of the system. This is the case of the superlattices between SrTiO3 and the ionic 

conductor ZrO2:Y2O3 (YSZ), with a 7% epitaxial mismatch. The epitaxial strain produces 

an extreme disorder of the oxygen sublattice in the ultrathin YSZ layers, increasing 

several orders of magnitude the ionic conductivity of the material (17).  

 

Aberration corrected STEM-EELS 

 

The properties of most of the aforementioned systems rely on the presence of small 

active regions (be it defects or the interface itself) which must be studied by real space 

techniques. In this context, the evolution of STEM-EELS since the development of the 

aberration corrector (18–21) has brought these techniques to the forefront of material 

science research. The spatial resolution limits have been pushed down to the half-an-

Ångstrom frontier (22–24) and we are now capable of analyzing single atoms within a 

crystal (25). In addition, recent advances in monochromated electron microscopes (26, 

27) bring new exciting possibilities to the field. One of the advantages of using STEM-

EELS is the possibility of studying multiple signals simultaneously. Electrons that have 

suffered scattering events after interacting with the nucleus of the atoms can be recorded 

by different means. Annular shaped detectors can give different types of images with 

complementary information, such as Z-contrast or annular bright field, depending on the 

detection geometry. The crystalline structure, epitaxial strain or distortions in the lattice 

produced by defects such as oxygen vacancies or collective phenomena can now be 
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studied with an unprecedented level of detail. At the same time, when electrons pass 

through the sample, some of them are dispersed inelastically, loosing part of their initial 

energy (28). This signal can be collected in the EEL spectrometer and provides 

information about the chemical and electronic properties of the material. We can use the 

EELS signal to map the elements in our system or study the details of the local electronic 

band structure. Therefore, the combination of STEM and EELS constitutes a very 

powerful tool for the study of TMOs. Furthermore, when the dimensions of the system 

are reduced to a few nanometers (as in an interface) STEM-EELS may be the only 

approach. In these cases, macroscopically averaged techniques may not provide the 

necessary information and the spatial resolution of the aberration corrected electron 

microscope supposes a great advantage. Studies of novel physical effects in interfaces, 

such as the confined 2D electron gas at the LaAlO3/SrTiO3 interface (14) or the colossal 

ionic conductivity in epitaxial ZrO2:Y2O3/SrTiO3 heterostructures (17), have benefited 

greatly from these developments.  

 

Motivation and aims of this thesis 

 

The main objective of this work is precisely, to unveil mechanisms underlying novel 

macroscopic behaviors in complex oxide heterostructures and establish a bridge between 

the atomic and macroscopic worlds. For this aim, we will exploit the power of the 

analytical capabilities of state-of-the-art aberration corrected STEM-EELS, studying 

fluctuations just within the sensitivity limits of these techniques. In the first two 

experimental chapters we analyze the presence and effects of point defects. In particular, 

we discuss electronic reconstructions caused by oxygen vacancies in complex oxides. 

Next we approach the problem of ionic conductivity blocking in polycrystalline materials 

by studying how the presence of intrinsic structural oxygen vacancies within a grain 

boundary gives rise to an electrostatic barrier. In the following chapters we shift gears 

towards subtle structural effects and measure how minor lattice distortions may result in 

dramatic responses due to long range electronic reconstructions in heterostructures 

composed of different TMOs. We study the relationship between collective phenomena 

such as magnetism or ferroelectricity with structural deformations of the BO6 oxygen 

octahedra and epitaxial strain. Furthermore, we investigate the emergence of novel 
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interfacial states that can give rise to unexpected phenomena such as quantum resonant 

tunneling in multiferroic tunnel junctions. 

 

Thesis outline 

 

With these objectives in mind, the results in this thesis are organized in chapters 

which start with an introduction expressing the motivation and objectives of the 

experiment and are closed with a brief discussion of the most relevant findings: 

 

 Chapter 2 is dedicated to the description of the experimental techniques used 

during this work. An extensive introduction to the components and mechanics of 

the aberration corrected electron microscope is given, along with a description of 

the data analysis techniques used to obtain the results presented in this thesis.  

 

 Chapter 3: here we give two examples on the effect of irradiation on complex 

titanium oxides. Using the electron microscope we show how we can controllably 

modify the surface of these materials and even create new phases with physical 

properties different from the parent compound. 

 

 

 Chapter 4: polycrystalline materials are of great importance in energy related 

applications, where ceramics such as yttria stabilized zirconia are used as 

electrolytes in solid oxide fuel cells. In this chapter we take advantage of the 

atomic resolution analysis possibilities of STEM-EELS to study the origins of 

ionic conductivity blocking in grain boundaries.  

 

 Chapter 5: charge transfer effects in interfaces between different complex oxide 

materials such as the Mott insulator LaMnO3 and the band insulator SrTiO3 have 

been reported in recent studies (29). Here we show how differences in epitaxial 

strain and structural distortions in the form of oxygen octahedral rotations are 

related to the transport and magnetic properties of superlattices with different 

thickness ratios.   
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 Chapter 6: In this chapter we show how a charged domain wall is formed in an 

ultra-thin ferroelectric layer used as a barrier for a multiferroic tunnel junction. 

The confined charge provides empty electronic states within the insulating 

tunneling barrier that give rise to a resonant tunneling transport effect in the 

multiferroic heterostructure. 

 

Finally, chapter 7 summarizes the main conclusions of this work. We also attach an annex 

including the list publications resulting from this thesis, along with other relevant 

information such as conference contributions and short stays in international research 

centers. 
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Chapter 2: Experimental methods 

 

 

 

In this work we have investigated diverse complex oxide materials by advanced 

electron microscopy techniques, such as scanning transmission electron microscopy and 

electron energy loss spectroscopy. These techniques allow the simultaneous exploration 

of structure, chemistry and electronic properties of these systems in real space and with 

atomic resolution. This chapter gives an overview of the actual techniques used in detail. 

We explain the basis of scanning transmission electron microscopy, the different 

components of the microscope and the theory behind aberration correctors. We also 

describe in detail the operation of the electron energy loss spectrometer and the analysis 

techniques used to obtain the results presented in this thesis.  
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Scanning Transmission Electron Microscopy 

 

In a scanning transmission electron microscope (STEM), an electron beam is focused 

into a small probe and scanned over a thin specimen. The electrons interact with the 

atoms in the sample as they pass through it, undergoing diffraction and scattering events. 

These scattering events produce electrons that go out of the sample with different angles 

and can be measured in different imaging and analytical detectors at the same time, 

providing different signals and complementary information. The first STEM was 

designed and constructed by Manfred von Ardenne in 1937-1938 (30, 31) and it had a 

resolution of 40 nm in the scan direction. The electron probe in modern aberration 

corrected STEMs can be smaller than one Ångström (21, 22), and this characteristic has 

made the technique a very powerful tool to study the structural, electronic and 

compositional properties of materials, down to the atomic scale (9). 

 

 

Figure 2.1: Schematic showing the different components of an aberration corrected electron 

microscope. Adapted from the Nion UltraSTEM User Manual. 
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The electron probe is a demagnified image of the source and hence, to obtain high 

spatial resolution, a small source is needed. To form the electron beam, electrons have to 

be extracted from the source and this process can be achieved in different ways. In 

thermionic sources, electrons are extracted heating the tungsten or LaB6 filament whereas 

in field emission sources, a high voltage is used to extract the electrons. The field 

emission guns (FEG) operate on the basis that the strength of an electric field is greatly 

increased at a sharp point (32). This way, using a very fine needle, or tip as a source and 

applying a strong extraction voltage, the work-function barrier is lowered enough for 

electrons to tunnel out of the material. For the field emission process to occur the surface 

of the tip needs to be clean of contaminants and hence, an ultra-high vacuum environment 

is needed for the operation. In this case, the filament is maintained at room temperature 

and the source is called a cold FEG (cFEG). Furthermore, cFEGs have an overall better 

performance than thermionic sources, with higher brightness, smaller source size and 

lower energy spread. A second voltage is applied to the electrons extracted from the tip, 

called the acceleration voltage, which accelerates the electrons to the desired energy and 

controls the effective source size and position producing a crossover. After the gun, a set 

of condenser lenses form a demagnified image of the source that is scanned over the 

sample using the scan coils, two layers of fast deflectors that produce a shift of the beam 

and then, bring the beam back to the parallel with the optic axis. The final step in the 

formation of the electron probe is done by the objective lens that produces the largest 

demagnification of the probe.  

 

The spatial resolution in the microscope is in principle, determined by the energy of 

the electrons as dictated by the de Broglie equation (32). However, in modern electron 

microscopes the resolution is actually limited by the optics aberrations of the magnetic 

lenses that compose the microscope (33). This problem has been partially solved with the 

introduction of aberration correcting lenses inside the microscope column (21). A perfect 

lens would form a focused spot with all the rays that come from the same spot. However, 

in reality the lenses focus the rays differently because of aberrations. Rays coming in at 

different angles, positions or energy will be focused with varying strengths. Aberrations 

are the difference in the optical path length between the real wave front and the perfect 

sphere. For STEM, the off-axis aberrations can be neglected as the electron probe is really 

small and there is nearly no difference in the position of the incoming rays. Lens 
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aberrations are classified in two categories, geometric aberrations due to errors in the 

optical path lengths and chromatic aberration due to a spread of the beam energy. The 

chromatic aberration (energy dependence) can be treated separately as the energy 

dispersion is really small when using cFEG, although it can be reduced further more 

using a monochromator (26). 

 

 

Figure 2.2: (a) Ray diagram for an ideal lens with no aberrations. (b) Diagram showing the effect of 

spherical aberration. (c) Diagram showing the effect of the chromatic aberration. Adapted from ref. (34) 

 

Assuming that the geometric aberration function depends only upon the angle of a 

particular ray with the optic axis, aberrations in the electron microscope can be expressed 

as a mathematical expression (21, 35): 
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This expression is a power series in function of the angle from the optic axis (θ), the 

subscript N of each term indicates the order of the aberration, which reveals how rapidly 

the aberration increases off-axis. The lower order terms predominate in the aberration 

function as θ is really small. This first order terms are the defocus and astigmatism, which 

can be corrected easily even in non-corrected electron microscopes. Spherical aberration, 

C3 or CS, expresses the angular dependence in the effect of the lens on the electron beam, 

rays propagating at different angles, are focused in different points. This aberration can be 

reduced by introducing an aperture that limits the range of angles at which the rays reach 

the lens. However, with the use of a small aperture one has to consider diffraction effects 
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that could also limit the resolution. The optimum aperture allows one wavelength of third-

order spherical aberration at its perimeter (19, 36), and is given by:  
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In 1936, Scherzer (18) showed how this aberrations were impossible to correct with 

conventional magnetic lenses with rotational symmetry, but later, he proposed how to 

pass this limitation, breaking the rotational symmetry of the system (19). In the late 

nineties, thanks to the advances in technology and computing power, spherical aberration 

correctors were developed for the electron microscope. There were two different 

approaches, depending on the symmetry of the multipoles used: Haider et al. achieved the 

correction of aberrations in a TEM using a hexapole corrector in 1998 (20) and Krivanek 

et al. used a cuadropole/octupole geometry to correct the aberrations in a STEM in 1999 

(21). In both cases, the multipole magnetic lenses produce a magnetic field that changes 

with the distance to the optic axis, equal as the spherical aberration does, and hence, after 

measuring the aberration coefficients, the corrector produces a field that counteracts the 

aberration. 

 

 

Figure 2.3: Electron beam intensity calculated before and after aberration correction with parameters 

based on the VG Microscopes HB603 STEM at ORNL, using an acceleration voltage of 300KV and an 

energy dispersion of 0,3 eV. Adapted from ref. (34) 

 

Figure 2.3 shows the effect of the aberration correctors in the electron beam for the 

HB603U STEM at Oak Ridge National Laboratory (ORNL). Before the correction, the 

full width at half maximum (FWHM) was 0.12 nm and after the correction, it decreases to 

FWHM = 0,05 nm, meaning that the electron probe is thinner and much intense after 

aberration correction. This improvement allows a better spatial resolution and more 
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sensitivity to individual atoms (25). The development of aberration correctors has 

continued in the recent years and now is possible to correct aberrations up to the 5
th

 order 

(22) and resolutions under 0.5 Å have been achieved at 300kV (23, 24). The aberration 

correctors have also helped to achieve atomic resolutions at lower voltages and even 

study single atoms at 60kV (37, 38) or 30kV (39). 

 

The post-sample optics consist of an objective lens that collects the electrons scattered 

at the sample and conduce them back parallel to the optic axis and the projector lenses. 

Together, these lenses make sure that the different signals enter the various detectors at 

the proper angles for any given detection mode as shown in Figure 2.4. 

 

 

Figure 2.4: Schematic showing a few different possible imaging detectors in a scanning transmission 

electron microscope. Adapted from the Nion UltraSTEM User Manual. 

 

The principal imaging modes in a STEM are the annular dark field (ADF) and bright 

field (BF) imaging (34). The ADF detector collects electrons scattered to high angles (50-

100 mrad) excluding the first-order diffracted beams (34). These elastic high angle 

scattering processes are produced when the electrons pass close to the atomic nucleus 
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(usually within 0.3 Å). The scattering angle per atom is approximately quadratically 

proportional to the atomic number, Z, as dictated by Rutherford equation. Hence, ADF 

imaging is usually referred as Z-contrast imaging (40). The ADF signal is largely 

incoherent, with independent contributions from all the atoms. Atomic columns in the 

image appear bright on a dark background. This fact implies that the interpretation of the 

ADF images is very straightforward: intense spots in the image correspond to atomic 

columns, and the brighter these spots, the heavier the atoms are (41). Hence, this 

technique allows the study of the structural and chemical properties of a material with 

atomic resolution (25). Depending on the detector angles, there can be medium angle 

ADF (MAADF) or a high angle ADF (HAADF), with a collection angular range from 

100 to 200 mrad (42). With higher angles the dependence of the intensity with Z increases 

as the signal from lower angles is reduced. 

 

 

Figure 2.5: Simultaneously acquired HAADF (a) and ABF (b) images of SrTiO3 down the (110) 

projection obtained with a Nion UltraSTEM 200 operated at 200kV. 

 

Other detectors commonly available are the bright field and annular bright field 

(ABF). These detectors produce images similar to the conventional high resolution 

transmission electron microscopes. The image is form with the “bright field disk”, the 

illumination cone incident on the sample. Typically, atomic columns in BF images appear 

as dark spots sitting on a bright background. This effect is produced when an atomic 

column has deflected the incident electrons to locations other than where the detector sits. 

The BF image is coherent, which means that the contrast depends on the relative phase of 
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the scattered and unscattered electron waves. The image can change from dark to bright if 

the interference changes from destructive to constructive. The phase also varies with 

defocus, sample thickness or sample orientation. These aspects make the interpretation of 

bright field images harder. Very often simulations are required. 

 

The ABF detector, which has been introduced recently (43) is an annular detector with 

an inner angle of 10 mrad and an outer angle of 20 mrad approximately, that is used in 

STEM mode to produce images with a contrast similar to BF ones. However, ABF 

imaging is less sensitive to thickness or defocus changes (44). This detector has been 

widely used to image light atoms as oxygen and even hydrogen, which has been imaged 

using this technique recently (45). This detector is more sensitive to lighter atoms because 

the signal from high Z atoms goes mostly to higher angles and it is not collected in the 

detector (46). Figure 2.5 exhibits an example of simultaneously acquired HAADF and 

ABF images of SrTiO3 down the (110) orientation. These images were obtained 

averaging a multiple-shot image sequence that is aligned by means of a cross-correlation 

process (47). The development of newer detectors for the electron microscope is a very 

promising field of study, and with the advances in technology new types and geometries 

of detectors will be possible such as pixelated (48) or segmented (49) detectors.  

 

Electron energy-loss spectroscopy 

 

When electrons pass through the sample and interact with the atoms some of them are 

dispersed inelastically, transferring part of their energy to the sample (28). Some of these 

processes can be understood as the excitation of a single core electron to a higher energy 

orbital. The incident electron loses a given energy depending on the energy difference 

between the two levels. The transmitted beam can be focalized after travelling down the 

column into the EEL spectrometer, which has a magnetic prism that deflects the electrons 

depending on their energy as illustrated in Figure 2.6. The electrons are selected by an 

entrance aperture and then pass through a drift tube which deflects them by 90° with a 

magnetic field. Electrons that have undergone inelastic scattering are deflected to larger 

angles that those which have lost no energy. The EEL spectrum is then formed by a set of 

magnetic lenses in the dispersion plane, where a CCD camera or a photodiode is placed. 
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Figure 2.6: Schematic of an EEL spectrometer. Adapted from Williams & Carter (32) 

 

The EEL spectrum can be divided in three regions: the zero-loss, low-loss and core-

loss as shown in Figure 2.7. The elastic peak (zero loss) gathers the electrons that have 

been dispersed elastically, without losing energy, and also some of the electrons that have 

excited phonons, losing too little energy to be resolved by the spectrometer. The width of 

this peak serves as an indication of the energy resolution in the spectrum which, in theory, 

should only be limited by the energy dispersion of the electron source. The background 

present in the EEL spectrum extending from the zero loss tail towards higher energies is 

created by plural scattering. The intensity of the background is proportional to the sample 

thickness because the probability of electrons to suffer more than one scattering event 

(e.g., excite multiple plasmons) increases with sample thickness. It is very important, 

therefore, that the specimens to be studied are as thin as possible in order to increase the 

signal-to-noise ratio (SNR) reducing plural scattering. 
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Figure 2.7: Schematic of an EEL spectrum. Adapted from ref. (50) 

 

The lowest lying electronic transitions in the material are present in the low-loss 

region. If the material is an insulator or a semiconductor, the band-gap should be visible 

in this region. However, usually the width of the zero-loss peak is too large and bang-gap 

detection becomes a challenging task (51–55). The low-loss region also exhibits plasmon 

excitations produced by the interaction of the electron beam with the sample. In fact, the 

sample thickness can be estimated from the ratio between the zero-loss peak and the 

plasmon peaks integrated intensities. Inelastic scattering, due to the interaction of the 

incident electrons with the outer shells of the atom is visible in the EEL spectrum through 

a characteristic peak for each element in the range of 5-50 eV (low loss regime, including 

intraband transitions as well). The interaction with inner shells produces higher energy 

losses (above 50 eV) that appear in the spectrum as absorption edges (core-loss). These 

transitions are produced when an electron from the inner shells is excited into unoccupied 

states above the Fermi level. The edge energy onset corresponds with the ionization 

threshold which is characteristic of each set of core levels of a particular element, and 

allows the determination of the elements composing the studied sample. Figure 2.8 shows 

the characteristic shape of these features. The fine structure of the absorption edges 

corresponds to the convolution of the core levels with the unoccupied densities of states, 

modulated by the quantum mechanical rules governing electronic transitions. Each edge 

gathers all the features coming from transitions with the same principal quantum number 
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and orbital angular momentum. The analysis of the fine structure provides information 

about the electronic structure of the material directly from the EEL spectra. This structure 

is divided in two regions: the lowest energy features from the energy loss near-edge 

structure (ELNES) are the reflection of the unoccupied density of states and provide 

information about the local bonding environment such as the coordination and the 

valence. On the other hand, the higher energy features are called the extended energy loss 

fine structure (EXELFS) and arise from the effects of plural scattering. 

 

 

Figure 2.8: Schematic of the ionization edges fine structure demonstrating how EELS reflects the 

unoccupied density of states with electronic transitions from sharp core loss levels. Occupied states are 

indicated with gray shading in the density of states plot. Adapted from ref. (50) 

 

The EEL spectrometer is capable of producing different types of datasets. A single 

EEL spectrum can be acquired while the beam is placed on a given position in the sample 

or while scanning over a region of interest. Such spectra can be averaged achieving high 

signal to noise ratios. Other measurement method consists on scanning the probe over a 

region of interest (ROI) which is divided into a network of pixels, and acquiring an EEL 

spectrum for each pixel. This way a so-called spectrum image (SI) can be acquired (56, 

57). Usually, SIs are acquired scanning a rectangular ROI, which creates a three-

dimensional datacube of intensity as a function of energy-loss and position I(x,y,E). This 

technique permits the mapping of the intensity of the spectroscopic features as a function 

of position in an image, and allows mapping the different atomic species in the sample or 

even their electronic properties with atomic resolution (58). We can, therefore, create 
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atomic resolution spectrum images (58–61) distinguishing the elemental composition of 

every atomic column as shown in Figure 2.9. 

 

 

Figure 2.9: Spectrum image of a La0.7Sr0.3MnO3 / BaTiO3 / La0.7Sr0.3MnO3 trilayer grown on top of a 

(001) STO substrate. a) HAADF image of the region studied. b) Ti L2,3, Ba M4,5, Mn L2,3 and La M4,5 EELS 

integrated intensity maps. d) RGB color mix image produced by overlaying the Ti (blue), Mn (red), La 

(green) and Ba (yellow) maps. 

 

Imaging and EELS advanced analysis techniques 

 

In this work several advanced data analysis techniques have been used for both 

images and EEL spectra acquired with the electron microscope. For example, atomic 

column positions have been measured in both HAADF and ABF images to study, with 

high precision, structural distortions such as oxygen octahedral rotations or even 

ferroelectric polarization. We have also use the Peak Pairs analysis (PPA) plug-in for 

Digital Micrograph (available from HREM Inc.) to analyze strain effects in our samples 

caused by lattice mismatch between different materials or by extended defects as 

dislocation cores. By means of EELS, spatially resolved quantitative information has 

been extracted in order to analyze the chemical and electronic properties of the specimens 

studied. For this aim, we needed to use advanced analysis techniques such as the 
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compositional quantification routines in Digital Micrograph or fitting methods as the 

multiple linear least square fit (MLLS).  

 

Atomic column position mapping 
 

We used a direct atomic position mapping method to analyze structural distortions 

(62–64). In order to do so, we need to reduce the common noise present in the images to 

be able to measure the atomic column positions in a correct fashion. For this aim, a 

Fourier filter mask has been used (65), such as in the example shown in Figure 2.10. 

These images belong to a LaMnO3 bulk specimen. This material has a perovskite 

structure but exhibits an orthorhombic distortion, where the oxygen octahedron is rotated 

around the three-fold axis. This is visible in the (110) direction as a zig-zag-like relative 

displacement in between the Mn and O columns in the same atomic plane. In the filtered 

image (b), the contrast is enhanced. We can use this filtered image to obtain the atomic 

columns coordinates and quantify the possible distortions. 

 

 

Figure 2.10: a) Raw ABF image of bulk orthorhombic LaMnO3 down the [110] zone axis. b) Image 

resulting after filtering the image in (a) using a FFT mask. 

 

In order to determine the atomic column positions, we need to invert the contrast of 

the ABF image because our method looks for the center of the intensity ( ) of each 

atomic column. The method use an initial guess (manual input) of the grid of atomic 

column positions based on the number of horizontal and vertical unit cells within the 
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region selected (marked in red in Figure 2.11(a)). After obtaining this initial set of 

coordinates, the positions are refined in an iterative manner. For each iteration, the center 

(     ) of the intensity ( ) for the jth atomic column is calculated as (     )  

(∑        ∑         ) ∑     , where the denominator is the addition of all intensities, and 

the sums over i include all pixels within a user-defined radius from the center of the 

previous step. This process gives an estimate of the column position (with sub-pixel 

accuracy) and, since the intensity is averaged over several pixels, it is less sensitive to 

noise than taking a single pixel maximum. This procedure is typically iterated for about 

20 or more iterations for decreasing pixel radios and the convergence monitored. After 

the process, atomic columns that were too far from the initial estimate were treated as 

potentially unreliable. The results are shown in Figure 2.11(b), where we can appreciate 

the displacement of the oxygen atoms in the Mn-O plane due to the rotation of the oxygen 

octahedron. Once we have the positions, we can calculate different parameters or 

distortions within our crystalline structure as will be shown in the following chapters. 

 

 

Figure 2.11: a) Inverted filtered ABF image from Figure 2.10b, which has been used to quantify and 

map the atomic column coordinates. b) Image showing the resulting atomic coordinates for the oxygen 

columns. 
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Peak Pairs analysis (PPA) 
 

To study short and long range epitaxial strain effects, such as the ones produced by 

the different lattice parameters between two different materials or by structural defects, 

the PPA plug-in for Digital Micrograph has been used (66, 67). This algorithm works in 

real space and needs a reference lattice from a non-distorted region of the image to 

calculate the displacement field, which the user defines. First, the procedure locates the 

local intensity maxima, corresponding to the atomic column positions in the image. For 

this purpose, we need to use an image filtered in order to reduce the noise and 

consequently, improve the resolution limit of the technique. The algorithm then uses a 2D 

interpolation over the image to obtain sub-pixel resolution. After finding the peak 

positions, we choose two non-collinear basis vectors as the reference for the strain 

calculations. This procedure can be done either directly on the filtered image or selecting 

previously two directions in the fast Fourier transformed image. In our example we have 

selected the first reflections in the (001) and (100) directions to use these vectors as the 

basis vectors for our strain analysis and also, to extract only the information of the atoms 

in the A position (Sr, La, Ba) within the ABO3 perovskite structure (Figure 2.12(b)). The 

next step consists in the identification of pairs of peaks by looking for the first neighbors 

of each peak maxima at the distances and in the directions determined by the basis 

vectors as shown in Figure 2.12(c). Once the pairs of peaks are assigned, the 

displacements within the material are calculated and a non-distorted region of the image 

is selected as a reference for the strain calculations. In our example, we have selected as a 

reference one unit cell of the SrTiO3 substrate, which is the minimal repeating unit in the 

image. Afterwards, the strain tensor components (               ) are obtained at any 

point in the image resolving the following equations and using a 2D interpolation process:  
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where (     ) and (     )are the coordinates of the displacements with respect to 

the reference base vectors. Figure 2.12(d) exhibits the resulting strain tensor component 

in the (001) direction using the substrate as a reference. This image shows the difference 



Chapter 2: Experimental methods 

32 

 

between the substrate and the LSMO layer, where the out-of-plane lattice parameter is a 

5% smaller than in the SrTiO3. This local real space method has several advantages: the 

strain around defects can be obtained without the user intervention and the local character 

of the analysis prevents the propagation of errors around the studied lattice. 

 

 

Figure 2.12: a) Original HAADF image of an interface between a SrTiO3 substrate and a 

La0.7Sr0.3MnO3 thin film, down the [110] zone axis. b) Bragg filtered image obtained using the first two 

reflections in the (001) and (100) directions as shown in the FFT. c) Peak Pairs image obtained after finding 

the peak positions. The inset shows a magnified image for better appreciation. d) Strain map of the interface 

in the (001) direction. 
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EELS compositional quantification 
 

With EELS it is possible to extract quantitative information about the chemical 

composition of a material. This capability allows detection of non-stoichiometric areas or 

chemical segregation in the systems studied. This is possible thanks to the fact that the 

area under a given ionization edge,   , in the spectrum is proportional to the number of 

atoms of the chemical species per unit area (28). Assuming that the electrons contributing 

to the edge have undergone a single ionization event, the probability,   , that a given 

incident electron will suffer a determined ionization event,  , can be expressed as: 

 

         (
 

  
) 

 

where   is the number of atoms per unit area,    is the scattering cross section,   is the 

specimen thickness and    is the mean free path for ionization losses. This equation 

assumes that the spectrometer collects the complete angular range (       ), which is 

not true. Therefore, we have to modify the equation and if we also assume that the 

specimen is very thin, we can express the intensity above the background for a 

determined ionization edge (  ) as: 

 

  (  )     (  )  (  ) 

 

In this equation,    is the total transmitted intensity,   is the collection angle,   is the 

integration window and therefore,   (  ) is the partial ionization cross section. From 

this equation and if we know how large the investigated volume is and the cross-section 

of the element of interest, we can determine the absolute number of atoms of a given 

species. However, in practice, it is usually difficult to know the exact thickness of the 

specimen and, hence, it is easier to obtain relative concentrations between different 

species as illustrated in Figure 2.13. For a relative concentration ratio of these two 

elements, the total transmitted intensity term drops out and the ratio can be written as: 
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Figure 2.13: Schematic of the EELS quantification showing the low-loss and core-loss regions of the 

spectrum and the equations to obtain the absolute and the relative concentration of two chemical species in 

an EEL spectrum. 

 

Multiple linear least-square fitting 
 

The multiple linear least-square fit (MLLS) is a method based on the spatial-

difference technique (68). This analysis method consists in a fit of the experimental 

spectrum to two or more reference spectra (69, 70). We can express the experimental EEL 

spectrum as a linear combination of different components: 

 

 ( )           ( )      ( )     

 

where      is the power-law background,   ( ),   ( ) are the reference spectra and 

  ,     are the scaling coefficients. The fit coefficients obtained with this method give 

statistical weights associated with each reference spectra. Therefore, these coefficients 

may be used to quantify changes in the fine structure, separate overlapping edges as 

shown in Figure 2.14, or even produce better quality elemental maps.  
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Figure 2.14: Illustration showing how the MLLS fit method can be used to separate overlapping edges. 

Adapted from the Gatan EELS Imaging and Analysis School materials. 

 

We have used this method to quantify the oxidation states of 3d metals as titanium. 

Using reference Ti L2,3 edge spectra from well characterized materials where titanium has 

different valence band occupancies, we can fit our experimental spectrum and obtain the 

statistical weight for each valence state. For example, for the quantification of the 

titanium oxidation state in SrTiO3, we have used the reference titanium L2,3 edges spectra 

for LaTiO3 (Ti
+3

) and SrTiO3 (Ti
+4

) from the work of J. Garcia-Barriocanal et al. (29). We 

can also use this fitting technique to obtain better quality elemental maps from SIs (71). 

Conventionally, the background removal for core-loss edges is performed using a power 

law fitting (28), where the intensity of the background is given by       , where E is 

the energy loss and a and r are fitting constants. This method can be improved, mostly for 

low energy edges, using a MLLS fitting for the background and the edge signal (72, 73). 

We use the estimated background and edge signal after background removal obtained 

with Digital Micrograph as our reference spectra (Figure 2.15). Using this technique, the 

signal-to-noise ratio for the elemental maps after background subtraction is considerably 

improved because the background is forced to retain a constant shape for the whole 

spectrum image. To perform this advanced EELS analysis techniques is important to use 

data with very high signal to noise ratios and usually, throughout this work, random noise 

in the EEL spectrum images has been removed using principal-component analysis (74).  
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Figure 2.15: estimated background and edge signal after background removal obtained with Digital 

Micrograph  

 

Principal component analysis (PCA) 
 

As we have seen in this chapter, EELS can be used to extract high resolution 

information on the compositional and electronic properties of materials. However, not all 

the information recorded in an EEL spectrum or spectrum image is relevant. And 

moreover the analysis of the spectral features is not always straightforward due to noise. 

Thereby, data processing techniques as multivariate statistical analysis (MSA) are often 

used (75). In this thesis we have used the principal component analysis (PCA) routines 

for Digital Micrograph written by Masashi Watanabe (74), which are a useful way of 

applying MSA to SIs datasets. The purpose of PCA is to reduce the dimensionality of a 

large dataset to the minimum number of components that describe the original measure 

without losing any significant information (76). PCA decomposes an EEL spectrum 

image datacube into a two-dimensional matrix, combining the two spatial dimensions in 

the columns of the data matrix and storing the spectral information in the rows (75). Each 

row of the matrix contains a spectral feature uncorrelated to the other rows, which is 

called an eigenspectrum. In the other dimension, the columns represent the spatial 

amplitude of the eigenspectra in the loading matrix. A principal component is hence, the 

individual product of each row and column. The magnitude of each eigenvalue 

corresponds to the amount of variance with which the corresponding principal component 

contributes to the dataset.  
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Figure 2.16: Scree plot representing the logarithm of the eigenvalues vs the index of the principal 

component. A dotted red line highlights the portion of the plot where a flat behavior is observed 

(characteristic of uncorrelated noise). The red arrow points to the component index (n = 7) where the 

deviation from this flat behavior is observed. Inset: raw EEL spectrum showing an O K edge and a Mn L2,3 

edge (black dots). The red line is the same spectrum after PCA. Adapted from ref. (77). 

 

Typically, the logarithms of the eigenvalues are plotted versus the component number 

in a scree plot (Figure 2.16). The dominant principal components are closer to the origin 

and the components containing random noise lie on a straight line at the end. Therefore, 

experimental noise can be removed in a very reliable way reconstructing the original 

dataset by selecting the dominant components and discarding the random noise 

components. The inset in Figure 2.16 shows a comparison between the raw spectrum and 

the noise reduced spectrum after applying PCA. Nevertheless, PCA should be applied 

with a great care due to its great sensitivity to artifacts. A high intensity X-ray spike in a 

single spectrum or a small intensity artifact repeated in several spectra may be recognized 

as a component. Moreover, other experimental errors such as shifts in the energy, errors 

in the gain and dark current correction or energy misalignments must be addressed when 

applying PCA (78). Despite these problems, the high sensitivity of PCA and other 

multivariate analysis techniques makes of them a powerful tool. Slight modulations of the 
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spectral features with an actual physical meaning can be extracted out of a large SI 

dataset. For example, various phases in a specimen can be identified displaying the 

different principal components of the SI (74). Moreover, ELNES modulations localized 

only to an interface between two materials can be found and analyzed (79). 

 

Electron Microscopes 

 

We have used three different aberration corrected microscopes during this thesis: the 

JEOL JEM ARM200CF installed in the “ICTS Centro nacional de microscopía 

electronica” at Universidad Complutense de Madrid (Spain), and the Nion 

UltraSTEM100 and UltraSTEM200 both installed at the Oak Ridge National Laboratory, 

TN, U.S.A. 

 

 

Figure 2.17: a) Photograph of a JEOL JEM ARM200CF. b) Image of a focused aberration corrected 

ronchigram over an amourphous specimen acquired in a JEOL JEM ARM200CF microscope at ICTS 

Centro nacional de microscopía electrónica.. 

 

The JEOL JEM ARM 200CF electron microscope is equipped with a cFEG capable of 

working at 80, 100 and 200 KV acceleration voltages and a Gatan Quantum EELS 

spectrometer. It has a CEOS spherical aberration corrector in the condenser lens with a 6-

fold symmetry, as shown in Figure 2.17(b). This microscope is capable of working in 

both TEM and STEM modes and has the possibility of acquiring ABF images using a 

beam stopper with an outer radious of 10 mrad on top of the bright field detector.  
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Figure 2.18: a) Photograph of a Nion UltraSTEM 100. b) Photograph of a Nion UltraSTEM 200. c) 

Image of a focused aberration corrected ronchigram over an amorphous specimen acquired in a VG 

Microscopes HB603 STEM at ORNL. 

 

The Nion UltraSTEM100 (80) uses a cFEG that can operate at 60 and 100 kV 

acceleration voltages and is equipped with a Gatan Enfina spectrometer. On the other 

hand, the Nion UltraSTEM200 is equipped with a cFEG that operates at 60, 100 and 200 

kV and a Gatan Enfinium spectrometer. This microscope features also a dedicated ABF 

detector. Both of them are dedicated STEM microscopes equipped with Nion 5
th

 order 

aberration correctors using a cuadrupole/octupole geometry as shown by the 4-fold 

symmetry of the focused ronchigram image in Figure 2.18(c). 

 

Sample growth 

 

Most of our samples were grown by high oxygen pressure sputtering deposition 

within our group, GFMC at UCM (81). This method is based on the ballistic impact of 

atoms against a substrate after being removed from a material source. The sputtered ions 

come from targets made of the stoichiometric compound while the oxygen plays the role 

of the sputtering element. In our case, the substrate is placed on a heater plate below the 

targets. The growth takes place inside a chamber with a high vacuum of about 10
-6

 mbar. 

Figure 2.19 shows the sputtering chamber. It is connected to a turbo-molecular pump in 

combination with a membrane pump. A constant oxygen flow is injected and controlled 
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by a system of needle valves. Since the sputter yield depends on the energy of the 

incoming oxygen ions and the source atom species, the material removed from the target 

will deposit on the substrate in a manner which strongly depends on several controllable 

parameters such as the temperature of the substrate, the applied radio frequency (RF) 

power and the pressure inside the chamber.  

 

 

Figure 2.19: View of the sputtering chamber. The targets are mounted on a remote controlled arm to 

switch between the different materials. 

 

High temperature and pressure are required in order to grow epitaxial oxide 

heterostructures. Most samples studied in this work have been grown on SrTiO3 (100) 

substrates. The high oxygen pressure (2-3 mbar) used during the deposition process, 

favors a complete thermalization of the extracted species and at the same time, prevents 

them from back-spattering and loss of oxygen in the final crystalline structure. Under 

these conditions, the material deposition rate is slow and ensures an epitaxial growth of 

the sample. To preserve the optimal oxygen content of the structure and in-situ annealing 

at 900 mbar oxygen pressure is necessary. The growth conditions depend on the growth 

material and the substrate.  
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Specimen preparation 

 

The preparation of high quality specimens for transmission microscopy observation is 

a critical part of the process. The quality of the specimens affects enormously the results 

to be obtained. The samples prepared for observation must be undamaged, clean of 

surface amorphous layers and thin enough in order to measure good, reliable data. 

Specimens for transmission electron microscopy should be transparent under the electron 

beam. For this aim, they may have a thickness well below the elastic dispersion mean free 

path of electrons in the sample’s medium, normally around 100 nm. Sample preparation 

requires special techniques, and it is often a long and tedious process. There are two main 

possible geometries for TEM sample preparation: planar view, in which the electron 

beam is orthogonal to the substrate plane; and cross-section, in which the beam is parallel 

to the substrate plane. In this work, we have mostly used the second method, which is 

considerably more complex but indispensable for the direct characterization of interfaces 

and its microstructure. Figure 2.20 shows the different steps of the process: 

 

 

Figure 2.20: Schematic showing the different processes of sample preparation. 

 

1. 5x5x1 mm sized samples are first cut into 0.7 x 2.5 mm pieces approximately. 

This process is realized with a low speed diamond saw and the pieces must be 

cleaned in an ultrasound bath with organic solvents. 

 

2. The clean pieces are glued together with an epoxy in order to bring together the 

treated surfaces of the substrate. The epoxy layer must be thin and cover the 

whole surface of the substrate. The glued “sandwich” is left in a press at high 

temperature (150ºC) to cure the resin.  
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3. The sample is thinned down to 15 microns with a mechanical polishing procedure. 

First, we polish one side of the sandwich using lapping films with diamond 

particles of different sizes. Normally, we start with a 30 µm grain film, and then 

we use several films with decreasing grain size down to a 1 µm size lapping film. 

This way, we obtain a perfect specular surface in the first side of the sandwich. 

Then, we measure the thickness of the specimen to have a reference thickness 

value and we repeat the previous procedure to polish the second side, and thin the 

sample to approximately 15 µm. 

 

4. The 15 µm specimen is glued to a 3 mm cupper ring, which serves as support.  

 

 

5. The final thinning of the specimen to electron transparency is performed with a 

low angle and low voltage ion milling process. The ion mill is equipped with two 

Ar ion beams that work at 4 or 5 KV voltages and mill the sample until a small 

hole is made. The edges of this hole are thin enough for TEM observation. After 

the hole is made, it is advisable to clean the sample by milling it during five more 

minutes with a lower voltage (0,5 KV) in order to get rid of any deposited 

amorphous material. 
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Chapter 3: Irradiation effects on 

the surface of oxide materials. 

In this chapter we turn our attention into the study of relevant materials systems where 

minor densities of point defects (barely over the detectability threshold) drastically affect 

the macroscopic properties. We show how new superficial phases can be produced in Ti 

oxides by low energy ion bombardment. Surface irradiation results in the formation of 

heavily damaged surface layers which will be studied by atomic resolution Z-contrast 

images and analyzed by EELS, including depth sensitive studies. These surface 

treatments can turn an insulating SrTiO3 crystal into a conductor. We discuss the presence 

of an oxygen vacancy rich area immediately underneath the surface, which results in over 

population of the Ti 3d bands and, hence, in the observed metallicity. 
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Introduction 

 

In the previous years, a vast amount of research has been focused on the study of novel 

physical effects and functionalities achieved with state-of-the-art fabrication techniques in 

epitaxial systems. Unexpected results have been reported in oxide interfaces, but the 

equipment and conditions required to bring this kind of systems into the realm of 

applications are often very complex and expensive. Therefore, the development of more 

simple and inexpensive techniques to produce nanostructures with similar functionalities 

remains a challenge. In this context, there is a growing interest in methods capable of 

controllably modifying surfaces, such as nanopatterning through irradiation. New phases 

and nanostructured surfaces have been created by preferential ion-beam etching (82, 83) 

or ion sputtering treatments (84–86) in different materials. In order to harness such 

processes, probes capable of depth sensitive real space studies of heavily damaged layers 

with atomic resolution are a must. Combined STEM-EELS analysis is a powerful tool to 

study both the surface and the bulk of these materials.  

 

In this chapter, we address the effects of Ar
+
 ion irradiation on the surface of titanium 

oxides. In particular, we will focus on explaining the presence of surface metallic states in 

insulating SrTiO3 (STO) single crystals (87). Complex oxide materials, as STO, pose an 

exciting promise towards the design of electronic devices that could overcome some of 

the limitations of Si. Recent studies have reported that a 2D surface electron gas can be 

induced in commercial STO single crystals by Ar
+
 plasma irradiation (82). This type of 

irradiation can produce a metallic state with confined 2D transport properties, presumably 

resulting from oxygen vacancies, generated by ion beam etching (88–91). These 

vacancies provide carriers to the lattice, resulting in an insulator-to-metal phase transition. 

We will analyze the nature of irradiation effects in STO (discussing also the case of a less 

complex, binary oxide such as TiO2 as a reality check) performing a depth dependent 

compositional analysis of the irradiated layer. Furthermore, the origin of induced surface 

metallic states will be explained by analyzing the band occupancy of the titanium atoms 

closer to the surface. 
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Two paradigmatic titanium oxides: TiO2 and SrTiO3 

 

Titanium dioxide is a semiconducting material that exhibits different crystalline 

structures (rutile, anatase and brokite) depending on temperature, doping level or grain 

size. The most stable configuration is the tetragonal rutile phase with a space group 

   
           (92). In this phase, TiO2 has an indirect band gap of 3,05 eV at 300K. 

The physical properties of rutile depend strongly on the intrinsic defects of the material, 

consisting mainly on interstitial Ti
+3

 atoms and oxygen vacancies. These defects form 

donor levels in the TiO2 gap and produce a n-type semiconductor behavior of the material 

in normal conditions (93, 94). They are also responsible for the photo-catalytic properties 

of TiO2(95). 

 

Figure 3.1: Bulk structure of rutile TiO2 with Ti (O) in blue (red). The tetragonal unit cell has the 

parameters a=b= 4.587 Å, c= 2.953 Å. The stacking of the octahedra is shown on the right. 

 

A more complex oxide, STO, has produced a great interest because of its physical 

properties and is one of the most widely studied materials for oxide electronics. STO is 

one of the best candidates to produce heterostructures with other complex oxides. 

Moreover, the possibility to grow epitaxial STO layers on top of Si substrates (96) is an 

important advantage in the compatibility between devices based on complex oxides and 

current devices based on Si. STO has a perovskite structure above 106K with a    ̅  

space group (97) and a lattice parameter of 3,905 Å (98). In the typical ABO3 perovskite 

structure (Figure 3.2), the Sr atoms are positioned at A-sites and Ti atoms at B-sites, 

leading to a stack of alternating Sr
2+

O
2-

 and Ti
4+

O
2-

2 neutral planes. STO has an indirect 
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band gap of 3.25 eV, which makes it a band insulator and hence, the electronic properties 

of STO can be easily modulated by doping it with electrons. This can be achieved through 

substituting La for Sr cations or Nb for Ti atoms, and also by generating O vacancies 

(99). These processes introduce n-type mobile carriers in the STO lattice and reduce some 

Ti atoms to Ti
+3

, resulting in a mixed valence system (100–102). 

 

 

Figure 3.2: Atomic structure of non-reconstructed cubic STO: oxygen atoms (red) surrounding titanium 

atoms (blue), with strontium atoms (green) outside the octahedron and equidistant from the titanium sites. 

 

Experimental results 

 

Commercial STO single crystals were treated with an ion etching technique. The 

process consists in the irradiation of the whole sample with an ion plasma in vacuum 

conditions. The bombardment erodes the surface and may also lead to the implantation of 

ions producing deformations in the crystalline lattice. The results of the erosion depend 

on the crystalline direction of the sample subject to the process. This technique may also 

remove atoms from the specimen surface, process that could be accentuated using 

chemically reacting gases for the plasma in a technique called reactive ion etching (RIE). 

For this study, STO (001) single crystals were chemically etched and annealed following 

the standard recipe to ensure a TiO2 surface termination (103). Samples were irradiated in 
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an Ar ion milling reactor under a pressure of 2 mTorr and at RF powers between 20 and 

40 W for time periods of 5 minutes. The transport measurements were carried out in the 

van der Paw geometry (104) using evaporated Al contacts. IV curves were recorded to 

ensure their Ohmic nature. AFM images were acquired in a Bruker multimode Nanoscope 

III A, equipped with 1 µm, 15 µm and 150 µm maximum scanning area scanners. The 

microscopy characterization was carried out in a Nion UltraSTEM100 operated at 100 

kV. The specimens were prepared by conventional mechanical grinding and polishing and 

Ar ion milling. 

 

Transport characterization 
 

STO substrates become conducting after irradiation with RF powers above 25 W. 

Figure 3.3 shows the temperature dependence of the zero-field sheet resistance of samples 

irradiated with RF powers between 30 and 40 W. These treated substrates are metallic in 

the whole measurement range, and a superconducting behavior could be expected for 

lower temperatures. The resistance decreases as the RF power increases, denoting an 

enhancement of the irradiation induced damage. A power law behavior characteristic of 

electron-electron interaction (105) is also found below the STO structural transition (106) 

at 105K. Samples become insulating again after a 900 ºC bake in an oxygen atmosphere.  

 

 

Figure 3.3: Temperature dependence of the sheet resistance of crystals irradiated at RF powers from 30 

to 40 W for 5 minutes. 
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Surface characterization 
 

Atomic force microscopy was used to study the surface of the treated samples in order 

to characterize the erosion of the STO single crystal surface due to RF irradiation. Before 

irradiation, well defined, atomically flat terraces are observed (Figure 3.4 (a)). The 

terraces have 100 nm widths on average. After Ar
+
 irradiation, the surface suffers severe 

damage as denoted by Figure 3.4 (b), (c) and (d), which show the irradiation damage for 

different RF powers (20W, 36W and 40W respectively). For the lower RF powers, 

terraces are still observed although their edges are somewhat ragged. Increasing the RF 

power results in the loss of surface features and enhanced structural damage. For the most 

damaged samples, the terrace structure typical of the single crystal substrate is lost 

completely. Incidentally, a gradual change in the color of the samples is also observed. 

The samples become optically gray as damage increases, as previously observed by 

Reagor & Butko (82). 

 

 

Figure 3.4: AFM images of samples irradiated at different energies: no irradiation (a), 20 W (b), 36 W 

(c) and 40 W (d). 
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STEM-EELS characterization 
 

Cross-sectional scanning transmission electron microscopy images in Figure 3.5 show 

the effects of irradiation at the atomic scale. Simultaneous HAADF and BF images of a 

sample which was treated in the RIE system at 36W for 5 minutes were acquired in a 

Nion UltraSTEM 100 aberration-corrected STEM operated at 100KV. The eroded surface 

layer can be observed clearly. Low magnification images show that this damaged layer is 

continuous and homogeneous over long lateral distances, of the order of a few microns. 

The surface region exhibits poor crystalline quality: voids and amorphous areas, down to 

a depth of 12 nm are present. Such loss of crystalline order is also appreciated in the 

bright field image in Figure 3.5(d), which is equivalent to conventional high resolution 

transmission microscopy. Estimated values of the projected damage range of a few 

nanometers were obtained for the typical 100-200 eV energy range (107, 108) of the 

irradiation experiments, consistent with our microscopy observations.  

 

 

Figure 3.5: STEM images of a sample irradiated at 36 W for 5 minutes. Low magnification HAADF (a) 

and BF (b) images along with high magnification HAADF (c) and BF (d) images. 

 

We were concerned about the possible damage suffered by the sample during the 

preparation process, especially in the ion milling step, where the samples are thinned to 

electron transparency using a low angle and low voltage Ar ion milling process with 

beams voltages around 4 to 5 KV. To evaluate the possibility of introducing artifacts 
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resulting from the preparation process, we prepared a STO single crystal without any 

irradiation treatment using the same process and with the same parameters for the ion 

milling as the irradiated sample. As Figure 3.6 shows, the non-treated STO single crystal 

does not display any of the damage features seen in the irradiated specimen, conserving a 

perfect crystalline structure up to the most superficial atomic planes. Therefore, we can 

assure that the features observed in Figure 3.5 do not come from the sample preparation 

process, but from the RF irradiation treatment instead.  

 

 

Figure 3.6: Low (a) and high (b) magnification HAADF images of a STO single crystal without the 

irradiation process. Some spatial drift is observed. 

 

Specimen preparation: damage vs. no damage? 
 

In general, this possibility of damage and/or artifacts actually being induced during 

preparation is concern that is common to all microscopy, so here we will examine it in 

detail for a moment. We hope that the discussion will be relevant to the whole work in 

this thesis. For this aim, we have shifted gears back to a more simple system and 

irradiated a binary oxide such as rutile TiO2, where an independent macroscopic 

characterization that can be used as a reference is available. The irradiated samples were 

provided by the Surface Science Group at Complutense University. Specimens for 

microscopy characterization were also prepared with conventional mechanical polishing 

and Ar ion milling using the cross-section geometry and observed in a JEOL JEMARM 

200cF operated at 200 kV. Low magnification HAADF and ABF images in Figure 3.7 

show the irradiated layer on the surface of the TiO2 single crystal. The layer has a 
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homogeneous thickness of approximately 10 nm and is flat and continuous over long 

lateral distances. The high magnification images in the [001] orientation show the 

structure of the irradiated layer and its interface with the crystal. The interface, although 

not atomically sharp, is flat as depicted in the magnified filtered image in Figure 3.7(c) 

(yellow dashed line). The bombarded layer exhibits crystallinity with a well-defined 

orientation relative to the substrate. The fast Fourier transform (FFT) obtained from the 

whole image in Figure 3.7(c) shows the substrate and the film reflections (marked with 

yellow arrows), which hint that the crystalline structure of the irradiated layer is different 

from the substrate. Macroscopically averaged XRD and LEED measurements (109) have 

also detected this phase on the surface of the irradiated substrates before the preparation 

for the STEM observation. Therefore, any effects observed in these images are not an 

artifact resulting from sample preparation but actual consequences of the irradiation 

process.  

 

 

Figure 3.7: HAADF (a) and ABF (b) low magnification images of the irradiated layer down the [0 0 1] 

direction. High magnification HAADF (c) and ABF (d) images for the same orientation. The lower inset in 

(c) shows the partially coherent interfaces between the TiO2 substrate and the irradiated layer. A horizontal 

dashed yellow line marks the position of the interface. The upper inset in (c) shows the FFT extracted from 

the whole image. Yellow arrows point at the film reflections. The ABF images were acquired using an inner 

angle of 11 mrad and an outer angle of 20 mrad. 

 

As for the nature of the surface layer in this case, we have used an EEL spectrum 

image and the routines explained in the experimental techniques chapter to obtain a 
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chemical relative quantification of Ti and O. Figure 3.8 shows the results from the 

quantification analysis. The substrate presents a relative composition (atomic percent) of 

66% O and 34% Ti, as expected for TiO2. The irradiated layer, however, exhibits a strong 

variation in composition with a reduction of the oxygen concentration to below 60% and 

a Ti concentration larger than a 40% within 10 nm from the surface, which is consistent 

with the observations in the HAADF and ABF images. Interestingly, these values are 

closer to the TiO nominal composition.  

 

 

Figure 3.8: Low magnification high angle ADF image of the irradiated layer (a). The yellow rectangle 

marks the region where a spectrum image was acquired with an exposure time of 0.2 s/pixel. b) Relative O 

and Ti concentrations (atomic %), obtained from the quantification of the O K and the Ti L2,3 absorption 

edges (false color scale). For the EEL acquisition, a 5 mm aperture was used with a camera length of 3 cm, 

giving a collection semi-angle of 20.8 mrad and a convergence semi-angle of 35 mrad. The exposure time 

was of 0.2 s/pixel. Spectrum images were acquired using the sub-pixel scanning mode, where the beam is 

scanned across each pixel while acquiring an averaged spectrum 

 

These findings suggest that the surface of the oxide is not simply a reduced and 

defective layer, but a different TiO-like oxide phase resulting from recrystallization after 

bombardment. In what follows, we will see how treatments like this in more complex 

materials can induce new surface phases with different physical properties than the 

original crystal. 

 

Surface phases in SrTiO3 
 

Back to our analysis of irradiation effects on STO, EELS was also used in order to 

assess the irradiation effects on the electronic and compositional properties of the 
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samples. It is known that ion bombardment of titanium oxides produces a reduction of Ti 

in the regions closer to the surface (110). Line-scans were produced by scanning the 

electron beam along a line perpendicular to the surface while an EEL spectrum is 

measured in each pixel. The raw spectra were treated with principal component analysis 

(77) to reduce random noise from spectroscopic images. In order to obtain the oxidation 

state of titanium and study the oxygen concentration profiles, the fine structure of Ti L2,3 

and O K edges was analyzed. According to the dipole selection rule, the Ti L2,3 edge of 

the transition metals results from the excitation of 2p electrons to unoccupied states of 3d 

nature. These edges show two characteristic white lines, originated by transitions from the 

2p3/2 (L3) and 2p1/2 (L2) levels (split by the spin-orbit interaction) to empty levels of the 3d 

band. The Ti L2 and L3 lines are further split in two, as observed by x-ray absorption 

(111) and EELS (112), due to the crystal-field splitting of the threefold t2g (dxy, dyz and dxz 

orbitals) and twofold eg (dz
2
 and dx

2
- y

2
 orbitals) states. The L3 first peak shows transitions 

from the 2p3/2 Ti level to the 2t2g level, and the L3 second peak, from 2p3/2 to the 3eg level 

(113). This splitting is strongly affected by changes in the occupation of the Ti 3d band. 

On the other hand, the O K edge (around 530 eV), gives us information on excitations of 

oxygen 1s electrons to 2p bands, which are hybridized with empty Ti 3d orbitals (114). 

The near edge fine structure suffers significant changes with the occupancy of 3d states in 

Ti and therefore it also provides information about the Ti oxidation state. This edge 

shows two peaks at the onset around 530 eV, due to the Ti 3d t2g - eg splitting and is 

highly sensitive to bonding features (115). Hence, the analysis of the O K edge pre-peak 

will also provide information about the Ti 3d band occupancy and the Ti oxidation state. 

O K spectra exhibit another set of bands around 537-546 eV. These features originate 

from interactions between oxygen 2p states, and Ti 4s and 4p states (116). 
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Figure 3.9: EEL spectra of Ti L2,3 and O K edges obtained along the green arrow marked in the 

HAADF image with an exposure time of 1s/pixel of a sample irradiated at 36 W for 5 minutes. The EELS 

intensity has been normalized in order to show clearly the variation of the peaks along the spectrum image, 

and the spectra have been shifted vertically for clarity. A yellow dotted line on the HAADF image marks 

the position of the surface. 

 

In Figure 3.9, we show the variation of the Ti L2,3 and O K edges when the electron 

beam is placed on the surface and scanned into the material. The Ti L2,3 edge away from 

the surface shows features typical of the bulk Ti
+4

, with a noticeable crystal field splitting. 

But closer to the surface it looks more like a Ti
+3

 state, where only two peaks are present. 

The 3d orbital, unoccupied in the bulk (3d
0
), would become partially filled in the surface 

(3d
1
) as Ti changes from a +4 to a +3 oxidation state. The L2,3 onset also exhibits a 

chemical shift and moves to lower energies near the surface, which also indicates an 

oxidation state variance (116). These changes are consistent with a decrease in the 

oxidation state of Ti atoms (117), although some smearing of the fine structure due to 

amorphization may be possible.  
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Figure 3.10: EELS reference spectra showing the Ti L2,3 and the O K edges for bulk STO (blue) and 

LTO (red). The spectra have been displaced vertically for clarity. The ΔE peak separation is marked. 

Adapted from ref. (29).  

 

The Ti oxidation state can be quantified through the analysis of the Ti L2,3 edge. In 

order to do so, a MLLS fitting was performed using as references the spectra of LaTiO3 

(Ti
+3

) and SrTiO3 (Ti
+4

) shown in Figure 3.10. As explained in chapter 2, the fit 

coefficients give the statistical weights associated with Ti
+3

 and Ti
+4

 components, 

providing a way to obtain the Ti valence.  
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Figure 3.11: EELS line-scan along with Ti oxidation state quantification of the sample irradiated at 36 

W for 5 minutes. (a) HAADF image showing the direction of the scan (green arrow). The surface is marked 

with a yellow dashed line. (b) EELS data, showing the O K and the Ti L2,3 edges acquired with an exposure 

time of 1s per pixel. A yellow arrow marks the onset (pre-peak feature) of the O K edge. (c) Ti oxidation 

state profiles along the direction of the green arrow in (a), on a matching scale: the oxidation state profile 

calculated from the O K (Ti L2,3 ) edge is shown in blue (red). 

 

Figure 3.11 shows another line-scan from the same specimen, with the O K and Ti L2,3 

edges (Figure 3.11(b)). For this data set, Figure 3.11(c) shows the result of the MLLS 
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fitting analysis (in red). The topmost surface layer, heavily damaged, exhibits a 

drastically reduced Ti, with oxidation states near +3. As the electron beam moves into the 

material, a more bulk-like Ti valence is recovered, about 10 nm into the substrate. The 

average value for the Ti oxidation state below the damaged layer is +3.89  0.11 (red 

dotted line on Figure 3.11(c)). This value is maintained as deep into the substrate as the 

whole measurement range, tens of nm. The value of the Ti oxidation state can also be 

extracted from the analysis of the O K edge, where a clear evolution can also be seen in 

Figure 3.9. The edge onset shifts to higher energy losses near the surface (the onset is 

marked with a yellow arrow on Figure 3.11(b)), characteristic of a reduction of the Ti 

valence state (117). The separation between the first and the second peak decreases 

significantly, and the intensity of the pre-peak is also reduced. A way to quantify these 

changes consists on measuring the difference in energy between the peak positions of the 

pre-peak and the adjacent main peak (ΔE) of the oxygen K edge (29, 77). Gaussians 

curves are fitted to both the pre-peak and the main peak, and the difference in positions 

for the centers of both Gaussians is extracted along the line spectra shown in Figure 3.11. 

Assuming that there is a linear correlation between the ΔE and Ti oxidation state (118) 

and using the values of ΔE from bulk STO (ΔE=5,61 eV) and LTO (ΔE=3,73 eV) thick 

film as a reference (29), the Ti oxidation state can be extracted. However, since the O K 

fine structure is so smeared out near the surface, the method renders artifacts for the first 

few atomic layers, so these points have not been included here. For the rest of the scan, 

the quantification is reliable and shown in blue on Figure 3.11(c). We obtain a titanium 

+3.6 oxidation state near the surface. Again, within a length scale of 10 nm the Ti 

oxidation state increases and reaches a value of +3.92  0.06. 
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Figure 3.12: EELS spectrum-image along with relative compositional maps and Ti oxidation state 

quantification of a sample irradiated at 36 W for 5 minutes (a) HAADF image of the damaged surface area 

acquired simultaneously with the spectrum image. Relative compositional maps for oxygen (b) and titanium 

(c) obtained from the quantification of the O K and Ti L2,3 edges, respectively. (d) Ti oxidation state map 

obtained with the MLLS method applying to the Ti L2,3 edge. The dark blue zones correspond to Ti 
+3

 state 

and the light yellow zones are close to Ti 
+4

 state. On the dark blobs the residual of the MLLS fit is large 

enough that some presence of Ti
+2

 cannot be disregarded. The top few pixels correspond in all cases to the 

glue line. These pixels have been ignored for quantification purposes. 

 

The values obtained from both methods employed agree well within error bars, and 

they clearly denote a mixed distribution of Ti
+3

 and Ti
+4

 in the heavily damaged layer 

near the surface. As we go deeper in the material, the concentration of Ti
+4

 increases but 

the oxidation state does not reach +4 completely within the measurement range. 
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Unfortunately, in our experiments we are limited to surface studies: the specimen 

thickness increases as we move deeper into the material preventing high quality EELS 

data acquisition. The estimated thickness of the confinement zone suggested by 

magnetotransport data is 260 nm (87), a depth range that can hardly be probed in our 

STEM specimens. Nevertheless, two distinct regimes near the surface layer are observed, 

so in order to gain lateral statistics, 2D spectrum images were acquired. Figure 3.12(a) 

shows a high resolution HAADF image of the damaged surface area. Heavily damaged 

zones, where the crystalline contrast is lost, appear darker in the image. The O and Ti 

relative concentration maps quantified using the routines available in the Gatan Digital 

Micrograph software are shown in Figure 3.12(b) and (c), respectively. These routines 

may not be completely accurate in the presence of dechanneling, but we can comment on 

general trends and qualitative changes observed in relation to the features observed in the 

HAADF images. The layer is not homogeneous in the lateral length scale, as these maps 

show an intense decrease of the O concentration in these damaged nano-regions. In 

Figure 3.12(d), we show the calculated Ti oxidation state from the MLLS analysis of Ti 

L2,3 edge. Within the most damaged O deficient areas the oxidation state is close to +3. As 

we go deeper in the bulk, over 10 nm far from the surface, the oxidation state reaches a 

value close to +3.9 but it does not achieve the full +4 value of the bulk. 

 

Discussion 

 

We have studied the effects of irradiation procedures on the surface of titanium oxides 

in high quality STEM specimens. In both cases the irradiation modifies the composition 

of a superficial layer, producing new crystalline phases or even affecting the material 

enough to produce an insulator-to-metal transition. The ion bombardment of TiO2 

substrates induces a TiO-like layer, which exhibits a crystalline order and a defined 

orientation relative to the TiO2 substrate. On the other hand, the irradiation of STO single 

crystals with Ar
+
 plasma with a reactive ion etching process generates a highly damaged 

area within 10-12 nm of the surface, as observed by STEM images. We find a correlation 

between the metallic behavior and the degree of surface damage, where the most 

defective samples are the ones that present lower resistance values. The irradiation 

produces a heavy amorphization of the surface, along with significant O displacements in 
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a highly O deficient layer. EELS analysis demonstrates that these damaged regions show 

a dramatic reduction of the oxidation state of Ti atoms, which is near +3 at the very top 

layers. Within 10 nm of the surface, approximately, the high structural quality is 

recovered and the Ti/O ratio values approach those of the bulk. Nevertheless, the Ti ions 

remain slightly reduced.  

 

These results can be interpreted to explain the conduction properties of the irradiated 

STO single crystals. One would think that electron doping ensuing from the O vacancies 

may be directly responsible for the metallic behavior. Indeed, it is well known that doping 

STO with oxygen vacancies affects drastically its electronic structure and density of 

states. These changes lead to a variation in the electronic properties of the material, as 

previous theoretical studies proof (119). 

 

 

Figure 3.13: STO total and partial density of states calculated with FLAPW (Full-potential linearized 

augmented plane wave method). Adapted from ref. (119) 

 

For example, Figure 3.13 shows the total and partial density of states (DOS) of bulk 

STO calculated with the FLAPW (Full-potential linearized augmented plane wave) 

method. The graphic displays how the minimum of the conduction band (      ) is 

dominated by Ti 3d states with very small contribution from O 2p levels. The maxima of 

the valence bands are dominated by the O 2p levels, with a small contribution from Ti 3d 

levels. Therefore, the Ti-O6 octahedron is the main component of the valence band 

maximum and the conduction band minimum states. The Sr levels barely contribute 

because the Sr
2+

 ions have a nearly full ionic character. The strontium titanate bond 

structure is then, a combination between the covalent bond Ti-O2 and the ionic Sr
2+

-O
2-

. 

This situation entails a tendency in STO to trap the two electrons associated with an 
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oxygen vacancy, transferring them into the Ti 3d levels (120). The next figure shows the 

diagrams for the DOS of STO when introducing an oxygen mono-vacancy and a di-

vacancy. Figure 3.14(a) displays how the Fermi level moves into the conduction band, 

giving rise to an insulator-to-metal transition when introducing a mono-vacancy. The 

conduction band minimum energy shifts to lower energies, reducing the gap of the 

material. Occupied states in the minimum of the conduction band originate from Ti 3d 

levels. Thus, the two electrons produced by the introduction of the oxygen vacancy would 

relocate into empty Ti 3d levels in the conduction band, producing a neutral charge-state 

at the vacancy. 

 

 

Figure 3.14: STO total density of states with a) oxygen mono-vacancies and b) oxygen di-vacancies. 

Adapted from ref. (119). 

 

Figure 3.14(b) shows the DOS in when introducing a di-vacancy. In this case, there is 

a distortion close to the conduction band minimum, and the electronic configuration of 

STO presents a metallic ground state. There are states separated from the bottom of the 

conduction band, below the Fermi energy, showing that some of the electrons associated 

with the removing of two oxygen atoms are localized in the vacancy, forming a negative 

charge-state. Both cases show how introducing oxygen vacancies in STO leads to an 
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insulator-to-metal transition. The excess of electrons gets trapped within the Ti 3d band, 

reducing the Ti oxidation state from +4 (with an electronic configuration 3d
0
) to +3 (3d

1 

configuration). Such reduction is responsible for the measured insulator-to-metal 

transition (87). It is also important to note that the thickness of the conducting layer 

exceeds the ion range by orders of magnitude, probably due to thermal diffusion of 

oxygen vacancies into the bulk (89) or to electrons delocalized over long distance due to 

screening by the large dielectric constant (121). 

 

In conclusion, the results in this chapter highlight the relevance of irradiation as a path 

towards novel routes to produce heterostructures and interfaces between oxides. Such 

controlled surface treatments may produce new phases on the surface of oxide crystals 

with distinct physical properties. These techniques may result in a new route in the 

development of devices based on oxide interfaces. In the next chapter, we shift gears 

towards systems where oxygen vacancies are responsible for the bulk functionality, such 

as ionic conductors. 
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Chapter 4: Origin of ionic 

conductivity barriers at Y2O3 

stabilized ZrO2 grain boundaries 

 

 

Ion blocking at grain boundaries in polycrystalline ionic conducting electrolytes is one 

of the main obstacles we need to outpace to improve the performance of solid state fuel 

cells and batteries. Understanding the origin of these ionic conductivity barriers at grain 

boundaries is therefore a matter of great interest. In this chapter, we study a single grain 

boundary in a symmetric Y2O3 stabilized ZrO2 (YSZ) bi-crystal by dielectric 

spectroscopy, advanced electron microscopy techniques and density functional theory. 

We use strain analysis in the Z-contrast images to study the structural distortions around 

the grain boundary dislocation cores, atomic resolution EELS quantification 

measurements to analyze the compositional changes, and DFT calculations to study the 

electronic consequences of these changes at the grain boundary region. We find that 

important chemical and electronic alterations take place within one nm from the grain 

boundary plane, where extra electrons originated by the presence of oxygen vacancies 

give rise to an electrostatic potential dip. We will present these results as the explanation 

for ionic conductivity blocking at grain boundaries in oxygen ionic conductors, a view 

that is opposed to previous knowledge. 
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Introduction 

 

In the past years, there has been a growing interest in ionic conducting materials, 

principally motivated by their wide range of applications in solid state devices. The 

possibility of using these systems as electrolytes in solid oxide fuel cells (SOFC) makes 

them one of the most promising materials for designing alternatives to the contemporary 

energy production technologies (122–124). SOFC are devices capable of converting 

chemical energy in electrical energy using just hydrogen, methane or carbon monoxide as 

fuel with a high efficiency and without generating any polluting emission (125). The 

largest limitation of these devices is the high operational temperature needed to achieve 

the required ionic conductivity. For YSZ, the most popular ionic conductor used as 

electrolyte, this temperature is close to 800°C (123, 124). These materials are 

conventionally used in a polycrystalline form, and hence, their performance is strongly 

limited by the presence of grain boundaries, which affect significantly the macroscopic 

mechanical and electrical properties of the material (126–128). It has been reported, that 

the ionic conductivity is reduced at grain boundaries, where the resistivity is at least one 

order of magnitude higher than in the bulk (129). This resistance usually dominates the 

overall ionic conductivity due to the structural and chemical changes present within the 

grain boundaries (130–132). Surprisingly, the explanation to this ionic conductivity 

barrier is still a subject of controversy (126, 131, 133–140). 
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Figure 4.1: Sketch showing the current space charge layer model. The presence of oxygen vacancies at 

the grain boundary produces a long range space charge layer (λ
*
) shown in red, at both sides of the grain 

boundary. 

 

The current belief is based on the presence of a space charge layer produced by an 

oxygen vacancy depletion region that screens a positive charge localized at the grain 

boundary (Figure 4.1). If a space-charge region is associated with each side of the grain 

boundary, when the frequency of the ac electric field is low enough positive and negative 

charge alternately accumulates at each side of the grain boundary (separated by a distance 

2λ
*
) due to the blocking of mobile ions. λ

*
 would be the thickness of the space charge 

layer at each side of the grain boundary. The thickness of the space charge layer λ* is 

determined by the Debye screening length LD, and can be estimated from experimental 

data using the Mott-Schottky model (141). A recent study from our group (142) found a 

value of 1 nm for the space charge layer thickness of a single grain boundary in a YSZ bi-

crystal using dielectric spectroscopy measurements (143, 144). Surprisingly, this value is 

one order of magnitude thinner than found on previous reports (141). Here we will show 

these dielectric spectroscopy measurements and by combining STEM-EELS and density 

functional theory calculations we will shed some light into the origin of ionic conducting 

barriers in oxygen ionic conductors. 
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Ytrium stabilized zirconia (Y2O3 stabilized ZrO2) 
 

Oxides with fluorite structure, as zirconium oxide or zirconia, have a general chemical 

formula AO2, with a face-centered-cubic structure where A is a tetravalent cation and the 

oxygen anions are placed in the tetrahedral sites, as illustrated in Figure 4.2. Some of 

these materials tend to have vacancies in the oxygen anion lattice sites, which makes 

them good candidates for conducting oxygen ions. Undoped zirconia can be stabilized 

into three different crystal structures depending on temperature (145). At temperatures 

superior than 2600ºC, it exhibits a fluorite cubic structure. However, substituting the Zr
4+

 

cation with a larger species with lower valence number, such as Y
3+

, makes it stabilize in 

the cubic fluorite structure at room temperature. Figure 4.2 represents the doping process 

of ZrO2 with Y2O3, which is called yttrium stabilized zirconia (YSZ). YSZ has a Fm3m 

space group and a lattice parameter of 5.14 Å.  

 

 

Figure 4.2: Simple model of the doping process where Y2O3 dopes the ZrO2 

 

Furthermore, when doping ZrO2 with a compound like Y2O3, where yttrium has a 

lower oxidation state and a bigger ionic radius, oxygen vacancies are introduced into the 

zirconia structure (146, 147). More specifically, introducing one Y2O3 molecule into the 

ZrO2 lattice produces one oxygen vacancy by the following equation: 

 

                

 

where YZr represents the Y ions replacing the Zr cations, O is the regular oxygen ion on 

the anionic site and    is the oxygen vacancy. This relation lets us know the concentration 

of oxygen vacancies from the concentration of Y ions. Several studies on YSZ have 

shown that the highest ionic conductivity for all the temperature range (          a 
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1000°C) is obtained for a doping level of 8-9 mol% of Y2O3 in ZrO2 (148, 149). Higher 

dopant concentration causes the conductivity to decrease. This occurs because the ionic 

conductivity does not depend only on the concentration of oxygen vacancies, but also on 

the mobility of these vacancies. The ionic conductors are singular materials, where the 

conduction process is produced by the diffusion of charged ions through the material. 

This diffusion is thermally activated and the dependence of the ionic conductivity with 

the temperature is given by: 

 

     (
   
  

) 

 

Here,   
is the ionic conductivity, K is the Boltzmann constant, T the temperature and 

  
 
is the activation energy for ion migration. From the conductivity description, we can 

obtain the mobility through the following equation: 

 

  
  

 (  ) 
 

 

In ionic conductors, the charge carriers are much bigger and heavier than electrons, 

therefore their velocity is smaller and the conductivity values are also smaller than in 

metallic materials. Moreover, these charge carriers are constituents of the material 

structure and need available positions to move through the crystalline lattice, which are 

called vacancies. Then, the mobility depends on the vacancy concentration, the ionic 

radius of the dopants and the microstructure of the material. The ionic charge carrier will 

move from one vacancy position to the next, producing the ionic conduction process (as 

illustrated in Figure 4.3).  

 

 

Figure 4.3: Model illustrating the oxygen ionic conduction in YSZ 
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Overall, YSZ exhibits many characteristics that make it a most valuable material in 

different application areas. Thanks to the high ionic and low electronic conductivities, it 

can be used in chemical sensors or as electrolyte in solid oxide fuel cells. Moreover, YSZ 

has a high chemical stability and hardness, even at elevated temperatures, which also 

makes it a good option for fuel cells, which operate at very high temperatures. 

 

Experimental results 

 

YSZ bi-crystals were made by means of solid phase intergrowth. In order to produce a 

bi-crystal, two single crystals are cut to obtain the surface in the desired orientations, and 

then, aligned together and annealed under pressure in an ultra-high vacuum environment. 

The result is a smooth grain boundary at the atomic scale, free from impurities and 

deformation dislocations. The sample studied is a commercial 9% mol yttria content YSZ 

bi-crystal with a symmetrical 33° [001] tilt grain boundary acquired from MaTeck 

GmbH. The bi-crystal was cut and polished in the (001) orientation. The bicrystal grain 

boundary was characterized by dielectric spectroscopy measurements conducted using a 

Novocontrol BDS-80 system. Measurements were carried out in the frequency range 10
-3

 

– 10
7
 Hz and at temperatures between 240 – 300 ºC. For electron microscopy 

characterization, the specimen was prepared for a planar view observation with 

conventional mechanical polishing and Ar ion milling. In order to prevent charging 

effects, as the material is highly insulating, the specimen was coated with a one nm thick 

iridium layer. Low-loss EELS spectrum images were acquired in a Nion UltraSTEM100 

operated at 100 kV. The HAADF images and the high-loss EELS spectrum images were 

obtained in a Nion UltraSTEM200 operated at 200 kV.  

 

Transport measurements 
 

We analyzed the ion transport across the bi-crystal grain boundary using dielectric 

spectroscopy measurements. The impedance data have been fitted to an equivalent circuit 

shown in the inset of Figure 4.4. In this circuit, the contributions from the bulk and the 

grain boundary are modeled using a parallel resistor-capacitor combination (143) and 

afterwards, added in series. In order to account for the universal Jonscher’s response, that 
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is commonly observed in ionic conductors (150–152), the ideal capacitor has been 

replaced by a constant phase element in the model. Figure 4.4 shows the complex 

impedance at several temperatures where the contributions from the bulk, grain boundary 

and electrodes can be separated and are observed at the highest, intermediate and lowest 

frequencies respectively. The experimental measurements are displayed in Figure 4.4 as 

open symbols and the results from the fit to the model are presented as solid lines in the 

same plot. The lowest frequency data is affected by blocking effects at the electrodes and 

has been excluded from the fits. 

 

 

Figure 4.4: a) Complex impedance plots at 275 ºC (red) and 300 ºC (blue) showing the contributions to 

ionic transport due to the bulk (left semicircle) and to the grain boundary (right semicircle) in YSZ 

bicrystals with electrodes separated d=10 µm. Solid lines are fits to the equivalent circuit shown in the 

sketch. 

 

In order to make the contribution from the grain boundary comparable to that of the 

bulk, as seen in Figure 4.4, we deposited two electrodes separated just a few microns at 

both sides of the grain boundary. We used electron beam lithography and sputtering 

techniques to pattern these electrodes, shown in Figure 4.5(a). From the dielectric 

spectroscopy measurements, we can give an estimate of the space-charge region 

thickness. Following the sketch in Figure 4.5(b) and assuming: first, that the thickness of 
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the YSZ substrates is infinite as compared to the width of the electrodes (W) and the 

distance between them (d), second, that the electric field lines are perpendicular to the 

grain boundary within the space charge region, and last, that the dielectric permittivity in 

the grain boundary is similar to the bulk value (153, 154), then λ
* 

can be extracted from:  

 

  
   

 
   

  
 

 

where    and     are the bulk and the grain boundary capacitance values and    is the 

effective distance between the electrodes. We obtain a value of         , which is in 

the order of only one unit cell and about one order of magnitude smaller than previous 

reports (141). 

 

 

Figure 4.5: a) Optical microscopy image of the bi-crystalline boundary between the two gold 

electrodes. b) Sketch of the electrode geometry used and the inhomogeneous electric field created in the 

YSZ bicrystal. Solid lines represent electric field lines which are approximately perpendicular to the grain 

boundary plane within the space charge layers. 

 

Structural characterization 
 

We studied the structure of the dislocation cores at the grain boundary under the 

electron microscope. Depending on the directions and the angles of grain boundaries, bi-

crystals may exhibit very different dislocation cores geometries. Therefore, resolving the 

atomic structure of the dislocation cores is a key task in order to understand the properties 

of the grain boundary (155). Figure 4.6 shows low and high magnification atomic 

resolution Z-contrast images of the YSZ 33° [001] symmetric bi-crystal grain boundary, 
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where a perfect array of dislocation cores can be observed. Neither disordered nor 

amorphous structures are present in the sample, which indicates that the boundary is 

successfully joined at the atomic level. White arrows indicate the (100) direction in each 

side of the grain boundary. The actual angle between the arrows is 65°, which means that 

actual the angle between the two sides of the symmetric bi-crystal is 32,5°. The right 

panel shows an amplified image of the dislocation cores, where the Zr/Y atomic columns 

are arranged in a symmetric manner with respect to the boundary plane. The boundary 

dislocation cores can be described by a repetition of a symmetric structural unit, marked 

with yellow lines in the image.  

 

 

Figure 4.6: a) HAADF image of a YSZ symmetric 33° [001] bi-crystal showing the [100] directions in 

each side of the grain boundary. b) High magnification HAADF image with the grain boundary dislocation 

cores structural unit marked with yellow lines. 

 

The crystalline structure of the grain boundaries has strong implications in the cation 

segregation or the presence of point defects as oxygen vacancies, thus, we carried out a 

quantitative strain analysis to better understand the structural changes close to the grain 

boundary plane. 

 

Strain analysis 
 

Large strain fields develop around dislocation cores that may have an impact on the 

physical properties of these systems. In order to measure the strain around the grain 
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boundary dislocation cores, we have used the “Peak Pairs Analysis” (PPA) suite for 

Digital Micrograph (66, 67), as explained in chapter 2. Figure 4.7 shows images of 

different steps of the process: in Figure 4.7(a) we show a HAADF image of the grain 

boundary region, with the Fast Fourier transforms (FFT) for each side of the grain 

boundary. The directions (010) for both sides have been chosen as the reference base 

vectors for the strain analysis. On the right panel, we show the peak pairs map obtained 

from the image (a). The inset shows an amplified image of the peak pairs map. The 

structure of the dislocation cores is well resolved by the PPA plug-in.  

 

 

Figure 4.7: a) HAADF image of the YSZ grain boundary with the FFT of each side of the grain 

boundaries superimposed. The yellow circles mark the reflexions used as base vectors for the “Peak Pairs 

Analysis”. b) Peak Pairs map from the image in (a). The inset shows the structure of the dislocation cores.  

 

The maps of the rotation angle and the mean dilatation obtained from the PPA strain 

analysis are shown in Figure 4.8. The rotation angle shows a tilt of 22° between both 

sides of the grain boundary, which is the expected value for the symmetric 32,5° [100] bi-

crystal. The second map shows the mean dilatation,     √       , around the grain 

boundary dislocation cores. The strain is localized around the dislocation cores, with a 

value of nearly 60% on the expansive sites of the dislocation cores. The expansive and 

compressive sites structure, typical of a grain boundary core, is well resolved in this 

analysis. The homogeneous green-brown color of the rest of the image shows how there 

are no appreciable long range structural distortions.  
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Figure 4.8: a) Rotation angle map between the (010) directions in each side of the grain boundary, 

having taken the left side as reference. b) Mean dilatation map of the grain boundary, showing the 

dislocation cores. 

 

If we superimpose the mean dilatation (   ) map on top of the original HAADF 

image, it can be noticed that the expansive strain is localized to three atomic columns 

within the grain boundary dislocation cores, as shown in Figure 4.9 (a) and (b). 

Interestingly, there is an appreciable reduction of the image intensity for these three 

atomic columns. This intensity variation may be produced by two different factors: as the 

HAADF images show a contrast proportional to Z
2
, this effect could be produced by 

changes in the average Z number of these atomic columns. Secondly, a partial occupancy 

of these columns could also produce a similar effect (156). We will use atomic resolution 

EELS studies to evaluate these possibilities. 
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Figure 4.9: a) Mean dilatation map superimposed on a HAADF image of the grain boundary. b) 

Magnified region from image (a) where the mean dilatation map shows the three expansive positions in the 

grain boundary dislocation cores. 

 

EELS characterization 
 

To study the compositional properties of the grain boundary, which could help finding 

the origin of the ionic conductivity barrier in these systems, we used the EELS. Several 

EEL spectrum images were acquired in different regions of the bi-crystal specimen. The 

study of Zr and Y elements by EEL spectrometry entails a significant difficulty. There are 

minor M edges in the 300-400 eV range, but the signal-to-noise ratio and the localization 

of the signal is very low for these edges. Other option is acquiring the signal from the L2,3 

edges which have very high energy losses (2080 eV and 2200 eV for Y and Zr, 

respectively). However, long exposure times or very high beam intensities are needed to 

acquire spectrum images using these high energy edges.  

 

With these issues in mind, we have examined both the low and the high loss edges. 

First, we acquired EEL spectrums of the M edges in the 300-600 eV range using a Nion 

UltraSTEM 100 operated at 100KV and equipped with an Enfina Gatan spectrometer. We 

used a convergence semi-angle of 30 mrad and an EELS collection semi-angle of 50 mrad 

and a beam current of 10-20 pA. The spectrum image was acquired using an energy 

dispersion of 0.5 eV/ch and with an exposure time of 0.05 s/pixel. Random noise was 
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reduced using principal component analysis (74). Figure 4.10 shows normalized 

integrated signal maps corresponding to the Zr M4,5, Y M4,5, and O K edges, the spectrum 

image was acquired in the area marked with a yellow box in Figure 4.10(a). Although the 

M edges have a relative low energy and the signal is poorly localized, from the analysis of 

these maps we can see large compositional changes with the periodicity of the grain 

boundary dislocation cores, as previously reported for grain boundaries (137, 155, 157–

159). There is a depletion of the oxygen content in the vicinity of the grain boundary 

plane, accompanied by a reduction of Zr and a strong increase of the Y signal, which 

could be explained by a segregation of Y cations into the dislocation cores, as have been 

reported previously for grain boundaries in YSZ (126, 136, 160, 161). 

 

 

Figure 4.10: a) Z-contrast image of the grain boundary region obtained in a Nion UltraSTEM 100 

operated at 100kV (a), the yellow dashed box marks the area where an EEL spectrum image was acquired. 

(b), (c) and (d): Atomic resolution, integrated signal maps of the Zr M4,5, Y M4,5 and O K edges, 

respectively, normalized to the nominal bulk concentration. The exposure time is 0.05 s per pixel. Some 

spatial drift is observed. 
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We also studied the same specimen in a Nion UltraSTEM 200, operated at 200KV and 

equipped with an Enfinium Gatan spectrometer. The Enfinium is capable of much faster 

acquisition times and has a 2048 channels CCD permitting same time acquisition of low 

(O K edge) and high (Zr and Y L2,3 edges) energy loss edges using an energy dispersion 

small enough to measure the fine structure features. The probe forming aperture was 30 

mrad and the EELS collection semi-angle was 36 mrad. The EEL spectra in Figure 4.11 

show averaged Zr and Y L2,3 edges from the grain boundary core region and the bulk. The 

Y signal increases on the grain boundary cores, with respect to the bulk. At the same 

time, the Zr signal decreases on the grain boundary. These results are consistent with the 

analysis of the previously shown low-loss energy M edges. 

 

 

Figure 4.11: Averaged Y L2,3 and Zr L2,3 EEL spectra from the bulk crystal (black) and the dislocation 

core (red). 

 

Thanks to the high signal localization of the L edges for Zr and Y, we can resolve the 

question that we proposed earlier in the chapter about the intensity decrease in the 

expansive sites of the GB dislocation cores. In order to asses this study, reducing as 

possible the experimental errors, the quantification was done in averaged spectrums from 

the regions marked with yellow boxes in the Figure 4.12(a). These areas correspond to the 

bulk of the specimen and the three different expansive sites spotted in the strain analysis. 
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We used the compositional quantification routines available in Digital Micrograph for 

this study. The results, shown in the table in Figure 4.12(b), exhibit a clear difference 

between the three atomic columns analyzed. In column 1, we measure a very strong Y 

segregation, more than doubling the bulk value, while the Zr concentration stays closely 

to the bulk. In contrary, columns 2 and 3 have a bulk-like Y concentration, but in this 

case, the Zr is highly reduced. Therefore, we suggest that the intensity reduction in 

column 1 is produced by a different chemical composition with respect to the bulk. As Y 

is a lighter element that Zr, it appears darker in Z-contrast images. On the other hand, the 

lower intensity of columns 2 and 3 is explained by a partial occupancy of these columns, 

as suggested previously by E. C. Dickey et. al (162) for grain boundary cores. It is worth 

noting that the concentration of oxygen locally grows to a 70% in positions 2 and 3. 

However, the oxygen decreases on average in the grain boundary region, as we see in the 

normalized intensity results. 

 

 

Figure 4.12: a) HAADF image of the YSZ bi-crystal grain boundary, the inset shows an amplified 

image of a dislocation core. The yellow squares denote the region where averaged EEL spectra were 

acquired. b) Table with the relative concentration values for Y, Zr and O in the regions marked in (a).  

 

We map again the normalized intensity for zirconium, yttrium and oxygen using the 

high-loss L edges. Figure 4.13(a) shows an atomic resolution HAADF image of the 

region where an EEL spectrum image was acquired with a beam current of 20-30 pA, 

using a dispersion of 1 eV/ch and an exposure time of 0.04 seconds/pixel. The sample 

was tilted until both sides of the grain boundary where “on axis” to obtain atomic 
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resolution maps, although some channeling effect might be present. Concentration 

(normalized integrated signal) maps corresponding to Zr L2,3, Y L2,3, and O K edges are 

shown in panels (b)-(d). The maps show again compositional changes within the 

dislocation cores, we can appreciate that the changes are much more localized in the maps 

obtained using the high energy-loss L edges. 

 

 

Figure 4.13: a) Z-contrast image of the grain boundary region obtained in a Nion UltraSTEM 200 

operated at 200kV (a), the yellow dashed box marks the area where an EEL spectrum image was acquired. 

(b), (c) and (d): Atomic resolution, integrated signal maps of Zr L2,3, Y L2,3 and O K edges, respectively, 

normalized to the nominal bulk concentration. The exposure time is 0.1 s per pixel. 

 

The profiles in Figure 4.14 show the concentration changes of each atomic species as 

a function of the distance to the boundary plane, obtained averaging the maps from Figure 

4.10 and Figure 4.13. The full symbol profiles correspond to the relative quantification 

produced with the low-loss M edges, and the open symbols correspond to the high-loss L 

edges quantification. The EELS maps show a compositional non-stoichiometry around 

the grain boundary. More specifically, and as hinted from the images, there is an intense 

segregation of Y to the dislocation cores, nearly doubling the concentration in the bulk 

regions. There is also a strong reduction in the oxygen concentration close to the grain 

boundary, much more than expected from the stoichiometric value calculated from the 

changes in the cation concentrations (black line in the image). The length scales of these 

changes, especially in the case of the high-loss quantification, are in the range of 5 Å (one 

unit cell), as obtained from the FWHM of the EELS oxygen and yttrium compositional 

profiles, which agrees with the results from the dielectric spectroscopy measurements. 
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This finding implies that the oxygen vacancies are intrinsic to the grain boundary 

(structural) and result in non-stoichiometric composition. Moreover, and opposed to 

previous studies (160, 163), there is no sign of a nanometers wide oxygen vacancy 

depleted space charge region, which should behave like the dark-green dashed line in 

Figure 4.14. 

 

 

Figure 4.14: Normalized integrated signal profiles across the direction marked with an arrow in Figure 

4.10(a) and Figure 4.13(a). Open symbols correspond to the analysis of the L edges quantification, while 

solid symbols result from the M edges. Zr and Y profiles have been normalized to the total cation 

concentration. The black line is the stoichiometric O content that would be expected from the measured Zr 

and Y signals alone. The dashed line is a guide to the eye for the excess O content to attain charge neutrality 

from depletion of O vacancies as expected in the conventional view.  

 

Density functional theory calculations 

 

Density functional theory calculations were carried out to better understand the results 

obtained by the ionic transport measurements and the electron microscopy 

characterization and provide additional information about the formation of ionic 

conductivity barriers at grain boundaries. For the calculations, the projector augmented-
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wave method (PAW) (164, 165) as implemented in the VASP code (166, 167) was used. 

The supercell used for the calculations was an ideal fluorite ZrO2 bicrystal with two 

symmetric grain boundaries. The lattice parameter chosen was 5.13 Å and the supercell 

total dimensions were 37.01 Å, 18.50 Å and 5.13 Å (or integer multiples of them). After 

removing the atomic columns inconsistent with the HAADF images, the chemical 

formula for the supercell was Zr100O200. We made the assumption that all the atomic 

columns have a full occupancy for this analysis. 

 

 

Figure 4.15: a) Model of the stoichiometric grain boundary along with the density of states (DOS). Zr 

atoms are represented in green and O atoms in red. The vertical line in the DOS denotes the position of the 

Fermi level. b) Model and DOS for a grain boundary with oxygen vacancies (black). The charge density 

corresponding to the electrons ceded by the oxygen vacancies is marked in yellow in both the atomic 
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structure and the DOS. c) Atomic structure and DOS with the same oxygen vacancies after structural 

relaxation. d) Same as (b) but including Y (in purple) enrichment in the crystallographic position consistent 

with the microscopy images. 

 

We estimated the formation energy of oxygen vacancies in the GB region and we 

found that, even in the absence of Y, the presence of oxygen vacancies lowers the energy 

of the GB by more than 0.1 eV/Å
2
 (Figure 4.15(b)). This result proves that the increase of 

oxygen vacancies found in the STEM-EELS results is intrinsic to the GB. Our findings 

show that the oxygen vacancy electrons are captured in empty electronic states in the 

energy gap of the grain boundary (Figure 4.15(c)), which produces a charging of the grain 

boundary. The charge density is represented by an isosurface of the square of the modulus 

of the occupied wave function with energies marked by the yellow shaded area in the left 

panels of Figure 4.15. The energy formation of oxygen vacancies is reduced because the 

extra electrons generated by the vacancy go to the energetically favorable empty states in 

the grain boundary, as shown in Figure 4.15(c). Further calculations show how Y 

segregates to the dislocation cores, as found by the STEM-EELS characterization, and 

moreover, probably due to the relative negative charge of Y, this segregation lowers the 

energy formation for oxygen vacancies and hence, enhances their concentration. It is 

important to note that the positive charge generated by the oxygen vacancies is not fully 

compensated by the segregation of yttrium ions to the grain boundary. The Y ions found 

by the STEM-EELS characterization act as acceptor for the extra electrons produced by 

the oxygen vacancies and hence, enhances the localization of the electrons in the grain 

boundary region (Figure 4.15(d)). 

 

Discussion 

 

Encouraged by the surprising dielectric spectroscopy results found by the dielectric 

spectroscopy analysis (142), we have used advanced electron microscopy techniques 

combined with density functional theory calculations to study the structural, chemical and 

electronic properties of a symmetric grain boundary in an YSZ bi-crystal. We have 

presented the ionic transport results, where thanks to the measurements of a single grain 

boundary, we can estimate the thickness of the space-charge region with great precision. 

We have been able to characterize the structure of the grain boundary dislocation cores at 
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the atomic level using high angle annular dark field images. From the strain analysis we 

can localize the grain boundary dislocation cores and we can disregard the presence of 

long range structural distortions. We have also performed a quantitative compositional 

analysis of the grain boundary using EELS, and we find no evidence of a nanometer thick 

region depleted of oxygen vacancies which would result in a space charge layer to screen 

a positive charge accumulation at the grain boundary, as previously believed (129, 141, 

151, 152, 168, 169). Quite the opposite, we find the presence of structural oxygen 

vacancies in a region of one unit cell at each side of the grain boundary, ensuing in a non-

stoichiometric composition.  

 

Figure 4.16: Sketch illustrating the potential dip model. The charge associated with intrinsic oxygen 

vacancies at the grain boundary produces a potential dip within a region of one unit cell.  

 

From the DFT calculations, we obtain that charge neutrality is achieved when the 

extra electrons produced by the oxygen vacancies go to unoccupied electronic states in 

the energy gap at the grain boundary. They generate an electrostatic potential dip, which 

acts as a barrier for the ionic conductivity as shown in Figure 4.16. The oxygen vacancies 

arriving to the grain boundary sense an attractive potential, due to the negatively charged 

GB, which they have to overcome to go through, resulting in a reduction of the ionic 

conductivity. This study results in a step further in the understanding of ionic blocking at 

grain boundaries, which will serve to improve the functional properties of polycrystalline 

ionically conducting materials used in energy related applications. So far, we have studied 
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the presence and effects of small amounts of point defects, such as oxygen vacancies, 

almost within the detectability limits. In the next chapters, we go a step further and we 

will study fluctuations of the atomic columns per se. In particular, we will try to detect 

and analyze minor oxygen displacements in complex oxides. 
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Chapter 5: Oxygen Octahedral 

rotations in LaMnO3/SrTiO3 

superlattices 

 

 

This chapter shows the study of interfaces between two different materials in a 

heterostructure. The interfaces between the Mott insulator LaMnO3 (LMO) and the band 

insulator SrTiO3 (STO) are analyzed in epitaxially grown superlattices with different 

thickness ratios and different transport and magnetic behaviors. Using atomic resolution 

electron energy-loss spectrum imaging, we map simultaneously the structural and 

chemical properties of these interfaces. In previous chapters we aimed at detecting defects 

such as oxygen vacancies from indirect methods, such as EELS quantification. Here, we 

will directly image O columns using atomic resolution EELS spectrum images. We will 

show changes in the oxygen octahedral rotations within the LaMnO3 layers when the 

thickness ratio between the manganite and the titanate layers is varied. Superlattices with 

thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along 

with a small amount of oxygen vacancies. On the other hand, thick STO layers exhibit an 

undistorted oxygen octahedron while the LMO layers present reduced O octahedral 

distortions near the interfaces. These findings will be discussed in view of the transport 

and magnetic differences found in previous studies. 
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Introduction 

 

The physical behavior of complex oxides heterostructures is directly related to the 

crystal and electronic structures present at the interfaces (17, 170). Particularly, subtle 

distortions from the perfect ABO3 perovskite structure lead to drastic changes in the 

behavior of these materials (171). Here, we study the deformations in the BO6 oxygen 

octahedron around the cations and the collective tilts of this octahedral network. These 

distortions play an important role in the electronic functionalities of perovskite materials 

(172–174). Oxygen octahedral rotations are strongly coupled with Jahn-Teller distortions 

and it has been reported recently (175) that they may serve to tailor the functional 

properties in epitaxially-strained orthorhombic LaMnO3. We will take advantage of a 

recent study in the interface between the Mott insulator LaMnO3 (LMO) and the band 

insulator SrTiO3 (STO) (29), and use it as a base to analyze the relation of these oxygen 

octahedral structural distortions and the already studied electronic and magnetic 

properties of this system.  

 

 

Figure 5.1: a) Hysteresis loops measured at 10 K. The n/m labels correspond to the LMO/STO layer 

thicknesses in unit cells. Top inset: field cooled magnetization versus temperature with an applied magnetic 

field of 1000 Oe. Bottom inset: Magnetization versus STO thickness of the (LMO17/STOn)x8 series 

measured at 10K and 0.25 T. The line represents the magnetization of the 22-unit-cell LMO thin film 

measured under the same conditions. b) Logarithmic resistivity curves of the same samples. The same label 

nomenclature and color code has been used in both panels. Adapted from Garcia-Barriocanal et al. (29)
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In previous work by Garcia-Barriocanal and co-workers (29), it was reported that the 

physical properties of STO/LMO superlattices were related to structural changes driven 

by an epitaxial mismatch of near 2%. The epitaxial strain can be controlled by the relative 

thickness ratio between LMO and STO layers of the superlattice heterostructure. It was 

found that by varying the STO spacer thickness, and hence the epitaxial strain, the 

electronic and magnetic properties of the manganite layers changed, as shown in Figure 

5.1. When the STO layer in STO/LMO superlattices is really thin, the LMO is relaxed 

and displays a ferromagnetic and conducting state. In contrast, LMO layers are partially 

strained when grown on top of thicker STO layers. Furthermore, they present an 

insulating behavior and display depressed ferromagnetism. Intriguingly, the oxidation 

state of the Mn, as measured by EELS (29), is in all cases close to +3. These findings 

suggest that the crystal structure changes due to epitaxial strain in LaMnO3, affecting the 

Jahn-Teller distortion or the oxygen octahedral rotations, may be coupled with the 

magnetic ordering (175). These structural variations may explain the electronic and 

magnetic properties of these samples.  

 

Here we will examine the oxygen sublattice behavior in the interfaces between LMO 

and STO. Since the bonds between the transition metal and the oxygen atoms control the 

electronic properties of these oxides, we aim to shed some light on how the details of the 

structural reconstruction, induced by epitaxial strain at the interface, may have an effect 

on the electronic coupling. To do so, we use aberration-corrected STEM and EELS to 

study the samples at the atomic level, focusing on the structural differences at the 

interfaces between LMO and STO layers in superlattices with very different thickness 

ratios. 

 

LaMnO3 crystalline structure 
 

Research on manganese oxides, also known as manganites, is one of the main areas of 

study within strongly correlated electron systems. The interest in manganites started with 

the report of ferromagnetism by Jonker & van Santen (176) in mixed crystals of LaMnO3-

CaMnO3, LaMnO3-SrMnO3 and LaMnO3-BaMnO3. These materials crystallize in the 

perovskite structure ABO3 with the A ions (La) at the corners of the unit cell, the B ions 
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(Mn) occupying the center of the cube while the oxygen ions are placed at the center of 

the faces, as shown in Figure 5.2.  

 

Figure 5.2: Arrangement of ions in the perovskite structure of manganites. Adapted from Dagotto et al. 

(5) 

 

The interest in manganites reemerges in the 1990s with the experimental observation 

of large magnetoresistance effects (177, 178) and more recently with the discovery of the 

so-called “colossal” magnetoresistance effect. In this chapter, we have studied the end-

member compound (LaMnO3) of this manganite family, while next chapter will examine 

other composition. At room temperature, LMO presents an orthorhombic A-type 

antiferromagnetic (A-AFM) and insulating Pbnm structure produced by the rotation of the 

oxygen octahedral network from the ideal perovskite structure (179, 180) and a large 

cooperative coupling of Jahn-Teller distortion. There are two factors producing this 

symmetry lowering from the ideal cubic perovskite where the Mn-O-Mn angle is 180°. In 

LMO, lanthanum has 12 nearest oxygen neighbors at a distance of   √ . By lowering the 

symmetry to trigonal, the Mn-O-Mn angle can be diverted from 180°, and lanthanum 

becomes irregularly 12-coordinated. The oxygen octahedra have equal Mn-O distances 

and are almost regular but rotated around the three-fold axis. Moreover, the Jahn-Teller 

distortion of the MnO6 octahedra lowers the symmetry further to orthorhombic, where the 

Mn-O distances are allowed to vary (Figure 5.3). Then, it is believed that the A-AFM 

phase is favored by the Jahn-Teller distortion and therefore, the strong coupling between 

the oxygen octahedral rotations and the Jahn-Teller distortion is responsible for the 

stabilization of the A-AFM insulator phase. 
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Figure 5.3: Schematic orthorhombic modification of the perovskite structure in bulk LaMnO3 

 

Epitaxial strain due to coherent matching to a crystalline substrate can change the 

stability of the orthorhombic A-AFM phase and favor a metallic ferromagnetic (FM-M) 

state, since they are energetically very close. In our case, we will consider the pseudo 

cubic lattice parameter of LMO as the cube root of the volume per formula unit of the 

relaxed A-AFM Pbnm structure (175) (            ). Epitaxial growth on STO 

(           ) produces a relatively large compressive strain of -1.78%. Theoretical 

studies show how compressive strain favors the less-orthorhombic FM-M phase with an 

insulator-to-metal transition at a critical strain close to -1% (175), thus, the metallic 

behavior of the superlattices studied in previous work by Garcia-Barriocanal (29).  

 

Furthermore, in STO (100)-oriented layers, (Sr
2+

O) planes alternate with (Ti
4+

O2) 

planes, which define an empty t2g valence band of a band-insulating compound. In the 

LMO perovskite with the trivalent A-site element, (La
+3

O) atomic planes alternate with 

(Mn
+3

O2) planes to define a half-filled eg conduction band with carriers localized by on-

site Coulomb repulsion (Mott-Hubbard insulator). Therefore, there is a breakdown in the 

BO6 octahedral network at the interfaces with polar (charge) and orbital discontinuities 
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among different orbital symmetries which may be responsible for the sensitivity of the 

electronic structure to the relative layer thicknesses (29). 

Experimental results 

 

In this chapter we studied three different samples: we analyze a bulk LMO powder 

sample to obtain a reference of the oxygen octahedral rotations and compare them with 

the values measured in the samples of interest. These samples are epitaxial LMO/STO 

superlattices grown on top of STO (100) substrates with a high pressure and high-

temperature (810 °C) sputtering deposition system (81). Two superlattices with different 

nominal thickness ratios were studied: LMO17/STO2 and LMO17/STO12 unit cells (u.c.), 8 

bilayer repetitions each. The characterization of the LSMO/STO superlattices was carried 

out using a Nion UltraSTEM100 (80) operated at 60 and 100kV. The probe forming 

aperture was 30 mrad while the EELS collection angle was 35 mrad. The EEL spectrum 

images were acquired with an exposure time of 0.05 seconds/pixel and a beam current 

around 20 pA. After acquisition, random noise in the EEL spectrum images was removed 

using principal-component analysis (74). The specimens were prepared by conventional 

mechanical grinding and polishing and Ar ion milling. 

 

Structural analysis 
 

As hinted by Garcia-Barriocanal et al. (29), changing the relative thickness of the STO 

and LMO layers in the superlattices affects the epitaxial strain in the heterostructure and 

consequently, it may modify the properties of the system. In order to asses this 

possibility, we carried out a strain analysis of the superlattices using the “Peak pairs 

analysis” (PPA) (66, 67) algorithm available for Digital Micrograph. Figure 5.4 shows 

both low (a) and high (b) magnification HAADF images of a (LMO17u.c./STO2u.c.) x 8 

superlattice, the images show an epitaxial growth in all the layers. Both LMO and STO 

layers are flat and continuous over long lateral distances. LMO appears brighter than STO 

due to the higher average Z number giving rise to an enhanced Z-contrast signal in the 

HAADF detector. 
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Figure 5.4: a) Low and b) high magnification high angle annular dark field images of a 

(LMO17uc/STO2uc) x 8 superlattice grown on STO (001) at 100 kV. STO layers exhibit a darker contrast, 

while LMO layers appear brighter. 

 

The high magnification HAADF image used for the strain analysis of the 

LMO17/STO2 superlattice is shown in Figure 5.5(a). In (b) we show a map of the out-of-

plane component of the strain tensor (Ɛyy), we have used the unit cell of LMO as a 

reference to calculate the strain values. This map exhibits the changes in the out-of-plane 

lattice parameters for the different layers in the heterostructure. We can see a blue color in 

the regions corresponding to the STO layers, indicating a compressive strain. We observe 

how different layers are not strained homogeneously and some regions of the STO layers 

present a smaller reduction in the lattice parameter in relation to the LMO layers. It is 

worth noting that the values obtained for the regions close to the top and bottom borders 

of the image are due to an artifact of the PPA. We can overlay the strain map on top of 

the original HAADF image to see the strain values for each individual atomic column, as 

shown in Figure 5.5 (c) and (d). If we look carefully to the magnified image in (d) we 

observe negative values for the out-of-plane lattice parameter in the STO layer. This 
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compressive strain is present only in the STO layers and there is no evidence of long 

range strain effects along the growth direction between the LMO and the STO layers. 

 

 

Figure 5.5: a) HAADF image of a (LMO17uc/STO2uc) x 8 superlattice used for the strain analysis. b) 

False color map of the strain tensor component in the “c” direction (Ɛyy) from the image in (a). c) Ɛyy map 

overlaid on the original HAADF image. d) Amplified image from the region marked with a yellow square 

in image (c) showing more clearly the strain values for each individual atomic column.  

 

Next, we studied a superlattice with a quite distinct thickness ratio: 17 LMO u.c. and 

12 STO u.c., which is still ferromagnetic but in this case, an insulating sample (29). 

Figure 5.6 shows low (a) and high (b) magnification HAADF images of a 

(LMO17u.c./STO12u.c.) x 8 superlattice. The image shows an epitaxial growth in all the 

layers with flat and coherent interfaces over long lateral distances. 
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Figure 5.6: a) Low and b) high magnification high angle annular dark field (HAADF) images of a 

(LMO17uc/STO12uc) x 8 superlattice grown on STO(001), obtained at 100 kV. STO layers exhibit a darker 

contrast, while LMO layers appear brighter. Sample oriented down the [110] zone axis. 

 

We performed again a strain analysis of the LMO17/STO12 superlattice using the PPA 

algorithm for Digital Micrograph (66, 67). As in the previous analysis, we used the LMO 

unit cell as a reference for the strain analysis. In Figure 5.7(b) we show the Ɛyy strain 

component map, where the different colors (strain values) for the LMO and the STO 

layers are appreciable. If we overlay the strain map to the original HAADF image as 

shown in (c), we can notice that the regions with different contrast colors (green/red) do 

not match exactly with the interfaces between the different layers (LMO/STO), meaning 

that there is an inhomogeneous strain propagation from one layer to the other. The first 

atomic planes of the STO layers present a tensile strain, matching the out-of-plane lattice 

parameter of the LMO layer. This strain is released through the layer, and the top atomic 

planes exhibit a reduction in the lattice parameter and a relaxation of the tensile strain 

coming from the LMO layer. Moreover, the LMO layer exhibits a similar behavior: the 3 

– 4 first atomic planes on top of the STO layer are strained to the STO lattice parameter 
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(presenting a green color), and the LMO lattice parameter is recovered after these atomic 

planes. 

 

 

Figure 5.7: a) HAADF image of a (LMO17uc/STO12uc) x 8 superlattice used for the strain analysis. b) 

Map of the strain tensor component in the “c” direction (Ɛyy) from the image in (a). c) Ɛyy map overlaid on 

the original HAADF image. d) Amplified image from the region marked with a yellow square in image (c) 

showing more clearly the strain values for each individual atomic column. Sample oriented down the [110] 

zone axis. 

 

We have confirmed the existence of different behaviors in structural trends resulting 

from epitaxial strain for the two chosen thicknesses ratios, as was suggested by Garcia-

Barriocanal et al. (29). In the case of the LMO17/STO2 superlattice, we find no evidence 

of a structural distortion produced by strain in neither the LMO nor STO layers. However, 

the superlattice with thicker STO layers exhibits some degree of propagation of the 

strains from the STO into the LMO layer. This difference may be responsible for the 
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measured transport and magnetic properties in these samples. In order to further study the 

extent in the structural differences between these samples we will study the local crystal 

structure in the form of the oxygen octahedral rotations in both specimens. 

 

Oxygen octahedral rotations in LaMnO3 bulk 
 

In order to carry out our analysis, we need a reference of the oxygen octahedral 

distortions in LMO. For this aim, we studied the structure of bulk LMO crystals, and 

measured the oxygen octahedral rotations in the bulk material. We used a Nion 

UltraSTEM200 operated at 200 KV to study the bulk sample. This microscope is 

equipped with an annular bright field detector with an angle detector range from 10-20 

mrad, which is very sensitive to light atoms as oxygen (44) and give us the precision 

needed for this reference study. A LMO single crystal was crushed in ethanol. The 

resulting solution was placed in a carbon grid and loaded in the microscope. 

 

 

Figure 5.8: a) ABF image of a bulk LaMnO3 crystal down the [110] direction. The inset shows the 

oxygen octahedral tilt map in Å. Each pixel corresponds to the difference in vertical displacements from a 

given O atom and the adjacent O first neighbor within the O2 plane. b) LaMnO3 crystal structure from 

neutron scattering data (181) showing La (green), Mn (blue) and O (red) atom positions. Black dashed lines 

show the different oxygen planes (labeled O1 and O2). A yellow line highlights the ripple in the O2 plane, 

for visual clarity. Adapted from ref. (182). 
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Figure 5.8(a) shows an ABF image of a bulk LMO sample down the pseudo-cubic 

[110] direction. Figure 5.8(b) shows a model of the LMO structure from neutron 

scattering data (181). We have labeled the O atoms in the LaO plane as O1, while O2 

atoms will be the O atoms in the MnO2 plane (both planes are marked with black dashed 

lines). A yellow dashed line highlights the ripple within the O2 plane due to the 

octahedral tilts, for clarity. The arrows placed in the model highlight the noticeable 

difference in the distances along the vertical (y) direction between O2 atoms in adjacent 

planes, due to the octahedral rotations. The ripple can be quantified from the images by 

assigning a pair of coordinates (xi, yi) to each O column within every O2 plane. To obtain 

these values, we map the oxygen atomic positions from the ABF image with an iterative 

process locating the center-of-mass of every column (62, 64), as explained in the 

experimental techniques chapter. Through this procedure, adjacent O atoms within a 

given O2 plane will exhibit a relative vertical offset of Δy = (yi+1-yi). The inset in Figure 

5.8(a) shows the calculated Δy differences for an area of the ABF image. Each pixel 

corresponds to one unit cell, and the crystal structure is drawn on the Δy image for clarity. 

The results exhibit a familiar “checkerboard” pattern, previously reported in other oxides 

(63), which illustrates the antiphase behavior of the in-plane tilts in LMO. In the model 

from neutron scattering data, this difference is close to      , similar to the values 

obtained from the bulk LMO ABF image (around          ). Previous studies of bulk 

LMO samples in the [110] direction already showed the “ripple” distortion in the oxygen 

sub-lattice (183). Once we have obtained the reference values from the analysis of the 

ABF images for the oxygen octahedral tilts in bulk LMO, we now use EELS atomic 

resolution imaging to study the samples of interest. EEL spectrum imaging is a more 

powerful technique since it allows simultaneous studies of chemistry and electronic 

properties through fine structure analysis.  

 

Octahedral rotations in LMO17 u.c. / STO2 u.c. superlattices 
 

Figure 5.9 shows a HAADF image of the superlattice with 17 u.c. of LMO and 2 u.c. 

of STO, which is both ferromagnetic and metallic (29). The layers are fully epitaxial and 

the interfaces are flat and coherent, as reported previously by Garcia-Barriocanal and 

coworkers. The yellow square marks the area where an EEL spectrum image was 

acquired with an exposure time of 0.05 seconds/pixel and a beam current around 20 pA. 
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In Figure 5.9(b), we show the O K edge integrated signal, where the oxygen atomic lattice 

from the LMO/STO/LMO interfaces region is resolved. Some spatial drift is present. It is 

worth mentioning that only the pure O columns in the MnO2 plane are visible. O atoms 

on the heavy La-O or Sr-O atomic columns are invisible due to dynamical diffraction 

(77). We also perform a quantification of the O concentration relative to the 3d metals 

(Mn, Ti) from the EELS data using the routines available in the Gatan Digital Micrograph 

software. These routines may not be completely accurate in the presence of dechanneling, 

but we can comment on general trends and qualitative changes observed in relation to the 

structural distortions measured. This quantification process yields a slight O depletion 

around 3% in the atomic plane in the middle of the STO layer (very likely, this value is 

slightly underestimated due to the reduced ADF signal on the STO layers). This deficit 

points to the presence of a small amount of O vacancies.  

 

 

Figure 5.9: a) HAADF image of a LMO17/STO2 superlattice. The yellow square shows the region 

where the spectrum image was acquired. b) Oxygen K edge map obtained from the area marked in (a) 

showing the STO thin layer, obtained through integration of the edge signal after background subtraction 

using a power law. The interfaces are marked with red lines. Some spatial drift is present. The oxygen 

relative composition profile is presented on the right end, in a matching scale. This concentration has been 

calculated relative to the 3d metals (Mn and Ti) using the Digital Micrograph quantification routines. 

 

To measure the oxygen octahedral tilts, we mapped the atomic column positions from 

the O K edge map in Figure 5.10(a) with the same process used in the ABF image from 

Figure 5.8. For an accurate calibration of the spectrum images, we used the annular dark 

field (ADF) image acquired simultaneously with our EEL spectra. The resulting oxygen 

atomic column coordinates are represented in Figure 5.10(b) with red crosses. Figure 

5.10(c) shows a map for the oxygen sublattice ripple within the O2 plane, the values 
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measured fluctuate slightly around 0.35 – 0.55 Å with maximum absolute values close to 

0.6 Å in the LMO layers, in good agreement with the ABF image analysis and the 

structure deduced from neutron scattering (181) in bulk LMO samples. We have averaged 

the absolute values from Figure 5.10(c) for each atomic plane in Figure 5.10(d) (error 

bars correspond to the standard deviation within each atomic plane) to show more clearly 

the behavior along the different layers: in both top and bottom LMO layers, the average 

ripple value (around 0.5 Å), is close to the bulk value. Interestingly, in the STO layer 

(region marked in red) instead of finding the flatness expected for a cubic material, we 

observe that the oxygen octahedra are also tilted, with an average vertical ripple value of 

        . 

 

 

Figure 5.10: a) Oxygen K edge map obtained from the area marked in Figure 5.9 showing the STO thin 

layer, obtained through integration of the edge signal after background subtraction using a power law. The 

interfaces are marked with red lines. Some spatial drift is present. b) Oxygen columns positions measure 

from the O K edge map in image (a). c) Oxygen octahedral tilt map in Å, from the area marked in (b). Each 

pixel corresponds to the difference in vertical displacements from a given O atom and the adjacent O atom 

within the O2 plane. The red shadowed region corresponds to the STO layer d) Averaged oxygen distortion 

values from (c) along the LMO/STO/LMO layers. A red rectangle marks the location of the STO layer. 
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These relatively large octahedral tilts imposed in the STO layer by the proximity of 

LMO may be possible due to the presence of the oxygen vacancies found by EELS 

relative composition quantification. Indeed, it has been reported that oxygen vacancies 

may induce oxygen octahedral rotations in STO (184). This result agrees also with the 

findings from (29) where a reduction of the Ti oxidation state was measured in the 

LMO/STO superlattices with thinner STO spacers, which could also imply the presence 

of oxygen vacancies. 

 

Octahedral rotations in LMO17 u.c. / STO12 u.c. superlattices 
 

In Figure 5.11 we show an STO/LMO interface region. In the HAADF image of 

Figure 5.11(a), STO and LMO layers are clearly distinguished thanks to the Z-contrast, 

where the STO layer appears darker and the LMO layers are brighter. The yellow square 

indicates the acquisition region for the EEL spectrum image. Figure 5.11(b) shows the O 

K edge integrated intensity map from the STO/LMO interface, which is marked with a 

red dashed line. The spectrum image was acquired with 0.05 seconds/pixel acquisition 

time and some spatial drift is observed. In this case, the quantification of oxygen 

concentration (relative to Ti/Mn) results in a relatively flat oxygen content across the 

interfaces (Figure 5.11(b)). Only a slightly higher O concentration can be detected within 

the STO layer (1-2%). This finding is an artifact due to the reduced scattering to high 

angles in the lighter STO material (ensuing in a higher intensity going forward into the 

spectrometer than when the electron probe is placed on the heavier LMO layer). 
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Figure 5.11: a) HAADF image of an interface in a LMO17/STO12 superlattice. The yellow square shows 

the region where the spectrum image was acquired. b) Oxygen K edge map obtained from the area marked 

in (a) showing the STO/LMO interface, marked with a red line. The oxygen relative composition profile is 

presented on the right end, in a matching scale. This concentration has been calculated relative to the 3d 

metals (Mn and Ti) using the Digital Micrograph quantification routines. 

 

Figure 5.12 shows the oxygen octahedral tilts analysis for the oxygen map in Figure 

5.11(b). Figure 5.12(c) shows how in the STO layer there is no appreciable contrast 

between different unit cells (pixels). However, the “checkerboard” pattern, associated 

with tilted octahedra, is recovered again in the LMO layer. The average ripple is plotted 

in Figure 5.12(d). This figure confirms how towards the middle of the LMO layer (top) 

the structure is bulk-like, with values similar to those in the LMO17/STO2 superlattice. 

However, the O ripple values decrease to around 0.2 Å within the four LMO planes right 

on top of the thick STO layer (shadowed in red), indicating a depression of the octahedral 

tilts. Interestingly, these atomic planes from the LMO layer presenting a reduced tilting of 

the oxygen octahedral rotations coincide with the atomic planes that exhibit a 

compressive strain, as shown in Figure 5.7. This change could be related to the difference 

in the transport and magnetic properties of these samples. No distortion is found in the 

STO layer (within the noise), as one would expect in a cubic system. 
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Figure 5.12: a) Oxygen K edge map obtained from the area marked in Figure 5.11 showing the 

STO/LMO interface. b) Oxygen column positions measured from the O K edge map in image (a). c) 

Oxygen octahedral tilt map in Å extracted from the O K edge map in (b). Each pixel corresponds to the 

difference in vertical displacements between any given O atom and the adjacent O atom within the O2 

plane. d) Averaged oxygen distortion values from (c) along the STO/LMO interface showing a decreased 

octahedral rotation in the first four planes of the LMO layer (marked in red). 

 

Discussion 

 

By means of aberration-corrected STEM-EELS we have studied two LMO/STO 

superlattices with different thickness ratios (17/2 and 17/12), which present different 

transport and magnetic properties. From the electron microscopy results, we can relate the 

different oxygen octahedral tilts maps obtained by EELS in our samples with their 

electronic properties. From the results in (29), we know that the samples have completely 

different magnetic and electrical properties: the superlattice with the thinner STO spacer 

(2 unit cells) is conducting and strongly ferromagnetic, while the sample with thicker 

STO layers (12 unit cells) is insulating and shows a reduced magnetic moment. 

Conductivity in the superlattices with ultrathin STO layers may be related to a small 



Chapter 5: Oxygen Octahedral rotations in LaMnO3/SrTiO3 superlattices 

102 

 

amount of oxygen vacancies (≈3%) and also the presence of “charge leakage” in these 

symmetric systems (29). The results from the EEL spectrum imaging and the strain 

analysis point to a possible relation between the oxygen octahedral rotations and the 

strain found in the layers. In the LMO17/STO2 superlattice, the LMO layers (with a 

relaxed structural state) exhibit pronounced, bulk-like octahedral tilts and the STO layer 

presents a distorted structure with oxygen octahedral rotations. On the other hand, in the 

LMO17/STO12 superlattice, we find no oxygen ripple in the STO layers. Instead we detect 

that the LMO atomic planes closer to the interface exhibit smaller octahedral tilts and a 

compressive strain produced by the thicker STO spacers. These differences in the 

structural distortions of relaxed and strained LMO layers may play a role in the different 

magnetic and transport behaviors of these samples. There have been several studies on the 

effects of strain and structural distortions on the electronic and magnetic properties of 

LMO thin films. In some of them relaxed LMO thin films are found to be metallic and 

ferromagnetic (185, 186), while strain may drive a phase transition to an insulating state 

with residual ferromagnetism, which is consistent with our results. It has also been 

predicted theoretically (175) that compressive strain favors the less orthorhombic FM-M 

phase, where the oxygen octahedral rotations are depressed, which is at odds with our 

findings. Therefore, further studies are still needed to fully understand the effects of 

structural distortions in the electronic and magnetic properties of LMO thin films. We 

have shown in this chapter how atomic resolution STEM-EELS is a powerful technique 

when it aims to mapping minor atomic displacements, imaging light atoms and 

simultaneously studying composition. In the next section these techniques will be applied 

together with the analysis of the electronic state to the study of a most relevant system: 

multiferroic tunnel junctions. 
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Chapter 6: Resonant tunneling 

transport through confined 

electronic states in multiferroic 

heterostructures 

 

 

Ferroelectric thin films hold the key to future non-volatile memories, logic elements 

or energy-related devices. Success of future applications relies on harnessing ferroelectric 

domains under applied electric and magnetic fields. In this chapter, we study the 

interfaces between two materials with different ferroic orders in a multiferroic tunnel 

junction. We measure the magnetotransport properties of the junctions, finding a novel 

behavior: oscillations in the differential tunneling conductance. Using aberration 

corrected electron microscopy we study the structural and electronic properties of the 

system which will explain the origin of these features. We use the HAADF and ABF 

detectors to analyze the structural properties of the samples, measuring the ferroelectric 

displacements unit cell by unit cell. The structural study is combined with the analysis of 

the electronic state in the ferroelectric layer provided by EELS. Our findings will explain 

how the oscillations in the tunneling conductance appear due to a resonant tunneling 

transport through discrete unoccupied states in a charged ferroelectric domain wall. 
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Introduction 

 

One of the most promising research lines in complex oxides stems from the possibility 

to grow high quality heterostructures combining materials with very different physical 

properties, such as different ferroic orders (ferroelectrics, ferromagnets, flexoelectrics). 

For example, ultrathin ferroelectric layers can be used as active tunneling barriers in 

magnetic tunnel junctions, allowing the coupling between these two different order 

parameters. This kind of heterostructure is referred to as a multiferroic tunnel junction, in 

which four resistance states result from the (in plane) parallel or antiparallel relative 

alignment of magnetization vectors of the magnetic electrodes for each (out of plane) 

direction of the polarization vector in the ferroelectric barrier (187). This coupling could 

expand the possibilities for data storage or enable complex logic operations (188–191). 

The incomplete screening of polarization charges by metallic electrodes sandwiching a 

thin ferroelectric layer can stabilize a ferroelectric state down to the sub-nanometer 

thickness range (192). Furthermore, electronic asymmetries at both interfaces can yield 

large changes of the tunneling electroresistance upon polarization switching (191, 193, 

194) of small ferroelectric domains with polarization vectors parallel to the (uncharged) 

domain walls. In this chapter we show that charged domain walls (with polarization 

vectors perpendicular to the wall) in ultrathin ferroelectric barriers within multiferroic 

tunnel junctions provide a path for a novel form of resonant transport through confined 

electronic states. This result is an experimental realization of the visionary concept of 

domain walls as an active part of future electronic devices (195–197) extending their 

functionalities to the design and control of novel forms of confined electronic transport. 

G. Catalan et. al. (195) introduced recently this concept of the domain wall serving as the 

actual device, suggesting that the local physical properties and dynamics of the domain 

walls themselves can provide an additional degree of freedom in order to tune the 

properties of future devices. 

 

The presence of unexpected charged domain walls has already been proposed to 

explain the ferroelectric properties of oxide heterostructures (198). Here, we report a 

novel ferroelectric state associated with charged domain walls in ultrathin BaTiO3 layers 

in multiferroic tunnel junctions. We show how the wall itself provides confined electronic 

states which give rise to resonant tunneling between the metallic electrodes. Our aim in 
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this chapter is to study the local polarization in combination with the electronic and 

chemical properties in a series of multiferroic heterostructures composed of ferromagnetic 

La0.7Sr0.3MnO3 and ferroelectric BaTiO3. We have made use of the ABF detector in the 

electron microscope to measure the local polarization in every unit cell of our 

ferroelectric layer, identifying the position of all atomic species, including light atoms as 

oxygen. Combining these structural displacements with the electronic properties found by 

EELS and DFT calculations we have expanded our study of the system, understanding the 

origin of the head-to-head charge domain wall and its correlation with the resonant 

tunneling transport across the ferroelectric barrier.  

 

La0.7Sr0.3MnO3 
 

During the 1990s, there was a renaissance in the study of manganites due to the 

discovery of the giant magnetoresistance effect (177). Considerable emphasis was given 

to the analysis of La1-xSrxMnO3 compounds since the Curie temperature may be above 

room temperature with the proper doping level. This characteristic drastically increases 

the chances for the practical applications of this family of complex oxides. The phase 

diagram and resistivity vs. temperature for this compound at several dopings are shown in 

Figure 6.1 (a) and (b) respectively (199). In this chapter we have used the La0.7Sr0.3MnO3 

(LSMO) compound. For this doping level, the bulk Curie temperature is TC = 369 K, the 

material is metallic, the saturation magnetization is MS = 3.7μB/atMn and the low 

temperature resistivity is ρ = 8 x 10
-5

 Ω cm. Another important property of LSMO is that 

it is a half-metallic ferromagnet as demonstrated by spin-resolved photoemission 

experiments (200). The minority spin conduction band is empty, so the material has 100% 

spin polarization at low temperature. This property is also related to the magnetization 

saturation of LSMO at low temperatures since it matches well the spin value expected 

from all 3d electrons present in manganese ions: MS = 0.7 x Mn
3+

(S = 4/2) + 0.3 x Mn
4+

(S 

= 3/2) = 0.7 x 4μB + 0.3 x 3μB =3.7 μB (201). 
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Figure 6.1: (a) Phase diagram of La1-xSrxMnO3. The AFM phase at large x is an A-type AF metal with 

uniform orbital order. PM, PI, FM, FI, and CI denote paramagnetic metal, paramagnetic insulator, FM 

metal, FM insulator, and spin-canted insulator states, respectively. TC is the Curie temperature and TN is the 

Neel temperature. (b) Temperature dependence of resistivity for various single crystals of La1-xSrxMnO3. 

Arrows indicate the Curie temperature. The open triangles indicate anomalies due to structural transitions. 

Adapted from refs. (199) and (202). 

 

A structural study of a LSMO crystal as a function of temperature shows that it is a 

rhombohedral perovskite above and below TC. The lattice parameter is            and 

           at room temperature (203). When LSMO is grown as a thin-film on a cubic 

substrate, the unit cell is distorted and it adopts a pseudocubic structure (204). However, 

upon distorting the unit cell, the ratio between the in-plane (a) and out-of-plane (c) lattice 

parameters becomes important for the magnetic properties of the manganite. In Figure 

6.2, the effect of epitaxial strain (c/a ratio) on the orbital order and consequently on the 

magnetotransport properties of LSMO thin-films of different compositions is shown. In 

this phase diagram the F region (orbital-disordered) is ferromagnetic and metallic, while 

the C (3z
2
-r

2
 ordered) and A regions (x

2
-y

2
 ordered) are insulating (7, 204). 

a b
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Figure 6.2: The schematic phase diagram in the plane of lattice strain c/a and doping level x. The data 

labeled LAO, LSAT, and STO represent the results for coherently strained epitaxial thin-films of La1-

xSrxMnO3 grown on perovskite single-crystal substrates: LaAlO3, (La, Sr)(Al, Ta)O3, and SrTiO3, 

respectively. LSMO-bulk and NSMO-bulk stand for results for the bulk single crystals of La1-xSrxMnO3and 

Nd1-xSrxMnO3, respectively. Adapted from (203). 

 

Another relevant issue related to LSMO thin-film growth is the existence of a so-

called “dead layer” or critical thickness that can be defined as the thickness above which 

the material remains both metallic and ferromagnetic. In different studies this dead-layer 

thickness for thin-films was estimated to be a few nanometers depending on the substrate 

chosen. For thin-films grown on STO, the LSMO dead layer thickness is estimated to be 

about 8 u.c. (205). The mechanism behind the dead layer problem, and its existence itself, 

is still controversial. The electronic phase-separation phenomenon at the LSMO/STO 

interface, where ferromagnetic insulating and metallic phases segregate within length 

scales of a few nanometers, is one of the possible explanations (5). Scanning tunneling 

spectroscopy (206) and ferromagnetic resonance (207, 208) support this scenario. 

Another possible origin of the dead layer is an orbital reconstruction at the LSMO/STO 

interface. It has been proposed that a strain induced distortion of the MnO6 octahedra 

leads to crystal-field splitting of the eg levels and lowers the d3z2-r2 orbital over the dx2-y2 

orbital resulting in a local C-type antiferromagnetic structure at the interface (15). 
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BaTiO3 
 

The discovery in 1949 of ferroelectricity in the simpler, non-hydrogen-containing 

perovskite oxide barium titanate dramatically changed the physical understanding of this 

phenomenon. BaTiO3 is the prototypical example of a now very large and extensively 

studied perovskite oxide family. BaTiO3 (BTO) is band-gap insulator with ferroelectric 

behavior at room temperature. At high temperature, it has a paraelectric cubic perovskite 

structure (   ̅ ) with lattice parameters:            . At the Curie temperature 

          , it suffers a phase transition to a ferroelectric tetragonal phase (    ) 

with              , and            . The ferroelectric tetragonal phase of BTO has 

a saturation polarization of               . This phase remains stable until 278 K, 

where there is a second transition to a ferroelectric phase with orthorhombic symmetry 

and               , and a third transition at           to a rhombohedric structure 

with                (209). These phase transitions involve small atomic 

displacements, dominated by the displacement of the Ti ion relative to the oxygen 

octahedron network (as shown in Figure 6.3), and a macroscopic strain. There is also a 

change in the alignment of the polar axis in each phase, changing from the <100> in the 

tetragonal phase, <110> for the orthorhombic and <111> in the rhombohedric phase.  

 

 

Figure 6.3: Crystal structure of the ferroelectric perovskite BaTiO3. (a) High temperature paraelectric 

cubic phase. (b and c) Room-temperature, ferroelectric tetragonal phases for the polarization pointing up (b) 

and down (c). The displacements are scaled to be clearly visible. Adapted from ref. (210). 

 

Ferroelectricity in perovskite oxides can exhibit a high sensitivity to changes in strain 

state, typically produced by external stress. Bulk ferroelectric properties can be enhanced 

in BTO thin-films using strain engineering (211). Figure 6.4 shows the expected TC for 
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(001) BaTiO3 under biaxial in-plane strain. The blue region represents the paraelectric 

phase and the yellow one, the ferroelectric phase. The intermediate green region shows 

the dispersion introduced in the prediction of TC from the differences in the reported 

parameters used in the thermodynamic analysis. This study (211) implies that a 

compressive strain of only 1% should increase the BTO thin film TC to values comparable 

to unstrained Pb(Zr,Ti)O3 films. Biaxial compressive strain may increase the transition 

temperature by nearly 500°, and give rise to a remanent polarization at least 25% higher 

that the bulk. Such compressive strain supposes a constraint for the ferroelectric 

polarization in BTO, forcing the unit cell to expand in the out-of-plane direction and 

enhancing the tetragonallity. This effect assures the alignment of the ferroelectric 

polarization in the c-axis.  

 

 

Figure 6.4: Predicted Curie temperature (TC) of (001) BaTiO3 under biaxial in-plane strain, based on 

thermodynamic analysis. Adapted from (211). 

 

Therefore, strain engineering plays a key role to reduce the ferroelectric critical 

thickness, which is necessary in order to implement ferroelectric layers as active tunnel 

barriers in multiferroic tunnel junctions. In the case of BTO, the critical thickness has 

been reported to be in the range between 12 to 1 nm (192, 212–215). Gruverman et al. 

(189) have shown ferroelectricity in 2.4 nm thick BTO films, and growing highly strained 

BTO on LSMO/NdGaO3, V. Garcia et al. reduced the critical thickness limit down to 1.2 

nm (188). Moreover, the incomplete screening of polarization charges by the metallic 
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electrodes in a multiferroic tunnel junction (as in our case) helps stabilizing the 

ferroelectric state in nanometers thick ferroelectric barriers. When doping BTO with 

electrons (for example by introducing oxygen vacancies), ferroelectricity should be 

quenched because itinerant electrons screen the long range Coulomb interactions. 

Nevertheless, these electrons partially stabilize ferroelectricity due to the screening of the 

strong crystal perturbation caused by oxygen vacancies (216). In fact, ferroelectric 

displacements have been observed in oxygen reduced conducting BTO (217), and first-

principles calculations have shown that the ferroelectric instability in BTO requires only a 

short-range portion of the Coulomb interactions of the order of the lattice constant, below 

a critical doping concentration nc = 0.11 e/u.c. (218). It is important also to notice that, 

although these levels of doping may appear high, BTO is known to retain its ferroelectric 

groundstate with charge densities in excess of 2 10 
21

 cm
-3

 (218). Doping BTO with 

electrons below this critical concentration may enhance the range of functionalities, 

opening opportunities for doped ferroelectrics in novel electronic devices.  

 

Experimental results 

 

The samples studied in this chapter are ultrathin epitaxial 

LSMO60u.c./BTO11u.c./LSMO18u.c. trilayers and LSMO15u.c./BTO11u.c. superlattices grown on 

top of STO (100) substrates. The growth was carried out using a high O2 pressure 

(3.2mbar) and high-temperature (750 °C) sputtering deposition system (81). Transport 

measurements were carried out in tunnel junctions fabricated using standard UV optical 

lithography and ion milling from the trilayer samples. The samples were patterned into 

micron size (9x18 µm
2
 and 5x10 µm

2
) rectangle shape pillars and silver electrodes were 

evaporated to measure perpendicular transport. X-ray diffraction (XRD) measurements 

have been carried out using a Philips X’pert MRD diffractometer located at CAI de 

Difracción de Rayos-X (UCM). STEM-EELS characterization was done using an 

aberration-corrected NionUltraSTEM200 operated at 200 KV. EEL spectrum images 

were also obtained using a Nion UltraSTEM100 (80) operated at 60 KV. The probe 

forming aperture was approximately 30 mrad while the EELS collection semi-angle was 

48 mrad. Random noise in the EEL spectrum images was removed using principal-

component analysis (74). The specimens for the microscopy characterization were 

prepared by conventional mechanical grinding and polishing and Ar ion milling. 
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Transport measurements 
 

We measured the tunnel junction resistance as a function of magnetic field swept in a 

hysteresis loop sequence. Several devices from different samples with identical tunneling 

barrier thicknesses were measured at different temperatures. In Figure 6.5(a) we show the 

resistance versus magnetic field sweeps measured at 14 K and with an applied voltage of 

800mV. The long side of the rectangular junction was aligned with the [110] easy axis in 

order to improve antiparallel alignment of the magnetization vectors for top and bottom 

LSMO electrodes. The resistance shows abrupt jumps at magnetic field values 

corresponding to the reversal of the magnetization direction of the electrodes. The 

positive sign of the tunnel magnetoresistance found is expected for this junction as LSMO 

is a half-metal with positive spin polarization (219). We measured I(V) curves in the 

parallel and antiparallel states to better characterize the spin-dependent transport 

mechanism. Figure 6.5(b) shows a non-linear behavior, expected for a tunneling transport 

mechanism. We observe that the current for the parallel state is higher than for the 

antiparallel state for the whole voltage range, which results in positive tunnel 

magnetoresistance. 

 

 

Figure 6.5: a) Junction resistance versus applied magnetic field sweeping from 4200 Oe to -4200 Oe 

(blue) and from -4200 Oe to 4200 Oe (red) at 14 K measured at 800 mV. b) Tunneling current as a function 

of applied bias at parallel (blue curve) and antiparallel (red curve) magnetic state at 14 K. 

 

We have obtained the tunneling differential conductance as the numerical derivative 

of the I(V) curves. As we see in Figure 6.6(a), it exhibits pronounced oscillations in both 
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the parallel and antiparallel states, which is at odds with the expected parabolic 

dependence of the conductance of a tunnel junction with the voltage at low bias (220). 

Thus, the oscillations we observe could indicate a resonant tunneling transport through 

discrete unoccupied states in the ferroelectric barrier. These quantum oscillations fade out 

when temperature is increased and they also disappear when a large voltage is used to 

switch the ferroelectric polarization, indicating that the feature responsible for the 

presence of confined electronic states in the barrier can be removed by a strong polarizing 

electric field. This feature could consist of mobile defects or structural distortions 

affecting the local electronic properties or perhaps a domain wall as already hinted by 

Han et al (198). One way or the other, the energy separation of the conductance 

oscillations at low temperatures, ΔE=70 – 90 meV, reflects the possibility of the presence 

of a strongly confined electronic states in extremely narrow regions within the 

ferroelectric layer. In the following we will show that in fact, the oscillations can be 

described by a 2D electron gas confined by a triangular potential well. In order to get 

further insights into the nature of this resonant tunneling state in the ferroelectric barrier, 

techniques capable of studying structure, chemistry and electronic properties with atomic 

resolution in real space are essential. We will use advanced electron microscopy, 

combined with density functional theory calculations to study this system in depth. 

 

 

Figure 6.6: a) Differential conductance obtained as the numerical derivative of current vs. voltage at 

parallel (blue curve) and antiparallel (red curve) magnetic state at 14 K. b) Differential conductance 

measured at 100 K.  
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Structural characterization 
 

We investigated a series of specimens of LSMO/BTO heterostructures grown on top 

of SrTiO3 (100) substrates consisting on trilayers composed of 

LSMO60u.c./BTO11u.c./LSMO18u.c and superlattices with two bilayers of 

LSMO15u.c./BTO11u.c. First, we analyzed the structural properties of these samples, using 

both X-ray diffraction and HAADF images to study the epitaxial growth quality and 

EELS to analyze the elemental distribution and the terminations between the different 

layers. 

 

 

Figure 6.7: a) X-ray diffraction spectra and (b) X-ray reflectivity of a BTO/LSMO bilayer. c) Low 

magnification HAADF image of a LSMO/BTO/LSMO trilayer showing the region where a spectrum image 

was acquired. d) EELS chemical maps showing the Ti L2,3, Ba M4,5, La M4,5 and Mn L2,3 edges integrated 

intensities. 

 

Figure 6.7 shows the structural characterization of a LSMO/BTO/LSMO trilayer 

grown on top of a (001) STO substrate. Bulk BTO lattice parameters for the tetragonal 

phase are               and             while STO has                . 

Hence, epitaxial BTO films on STO suffer a 2.06% biaxial compressive strain along the a 
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and b axes. The displacement towards lower angles of the (002) diffraction peak in (a) 

indicates an enlargement of the c lattice parameter due to this constrain. In addition, the 

reflectivity spectrum exhibits finite size oscillations, indicating the smoothness of the 

surface. In (c) a low magnification HAADF image shows the heterostructure, where the 

different layers are hardly noticeable due to the small difference in Z number between 

these materials. Nevertheless, we can observe a very flat surface indicating a planar 

growth. In order to appreciate more clearly the different layers, we used EELS to map the 

different chemical species in our specimen. Figure 6.7(d) shows the integrated intensity 

below the Ti L2,3, Ba M4,5, La M4,5 and Mn L2,3 edges after background subtraction using a 

power law fit. From these images we can observe how there is no major interdiffussion 

across the interfaces and that the layers are flat and continuous over long lateral distances. 

 

 

Figure 6.8: High magnification HAADF image of a LSMO/BTO/LSMO trilayer down the (110) 

orientation showing the epitaxial growth of each layer. 

 

The high magnification HAADF image from Figure 6.8 exhibits the high structural 

quality of the sample. The growth is perfectly epitaxial and the different layers appear 

fully strained to the in-plane lattice parameter of the STO substrate. Such strain supposes 

a constraint for the ferroelectric polarization in the BTO layer. The in-plane compressive 

strain forces the unit cell to expand in the out-of-plane direction, pinning the ferroelectric 
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polarization to align preferentially along this axis (221). There is very little contrast 

between the different materials in the image so we acquired high magnification EEL 

spectrum images to identify the exact position of each layer and the atomic plane 

terminations. 

 

 

Figure 6.9: a) HAADF image of the LSMO/BTO/LSMO trilayer with the region studied marked with a 

yellow box. b) ADF image recorded simultaneously to the EEL spectrum image. c) La M4,5, Mn L2,3, Ba 

M4,5 and Ti L2,3 EELS intensity maps. d) RGB color mix with Mn in blue, Ti in red and Ba in green. e) 

Diagram showing the different elements in the specimen and the symmetric termination of the LSMO/BTO 

interfaces. 

 

Figure 6.9 shows a high magnification EEL spectrum image of the interfaces in a 

LSMO/BTO/LSMO trilayer. Figure 6.9(a) shows the HAADF image of the region where 

the spectrum image was acquired (highlighted with a yellow square). In Figure 6.9(b) we 

show the simultaneous ADF image recorded with the EEL spectrum image, where we can 

see that the pixel sampling rate is high enough to obtain an atomic resolution spectrum 

image. The different chemical maps corresponding to the La M4,5, Mn L2,3, Ba M4,5 and Ti 

L2,3 edges are shown on Figure 6.9(c). We observe a TiO2 termination for both top and 

bottom interfaces of the BaTiO3 layer. Therefore both LSMO layers are terminated in 

La0.7Sr0.3O planes. In (d) and (e) we show a color map and an atomic diagram with Ti 

(red), Ba (green), La (blue) ad Mn (yellow) where the symmetric termination of the BTO 

and LSMO layers is better perceived. The symmetric configuration produces two opposite 
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electric dipoles in the interfaces (222) which could effectively pin the ferroelectric 

polarization in the BTO layer, thus affecting strongly the ferroelectric properties (223) 

and possibly creating a ferroelectric dead layer at both interfaces (224). We will see later 

in the chapter how, indeed, the symmetric structure of our system is the key to explain the 

properties found. 

 

 

Figure 6.10: Atomic plane-by-plane values of lattice parameters for a LSMO/BTO/LSMO trilayer. a) 

HAADF image with a false color     strain map superimposed. The blue arrow indicates the growth 

direction. b) Out (solid symbols) and in plane (open symbols) lattice parameters profiles obtained 

measuring the A-site atomic positions directly on the HAADF image in (a). 

 

We have also studied the strain behavior along the different layers of our specimen 

using the PPA plug-in (66) for Digital Micrograph. In Figure 6.10(a) we show the 

evolution in the out of plane lattice parameter for the three layers. We have superimposed 

the     strain map created with PPA over the original HAADF image. Thanks to this 

image, we can identify the position of our BTO layer, determined by the atomic columns 
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with a higher out-of-plane strain values (brighter spots). On the other hand, we have also 

measured the A-site atomic column positions directly on a HAADF image (62–64), 

explained in chapter 2. From the atomic column position mapping, we have calculated the 

distances for consecutive La/Ba columns in the growth direction and averaged these 

values for each atomic plane (Figure 6.10(b)). From this study we can estimate averaged 

values for BTO out and in plane lattice parameters, obtaining values of cBTO=4,11 Å and 

aBTO=3,92 Å, which correspond to a tetragonality ratio c/a of 1,05. This result is in 

agreement with reported values in similar ferroelectric nanometric BTO thin films (188, 

194). Figure 6.10(b) shows that the in plane lattice parameter (open symbols) slightly 

increases through the different layers, which indicates a small strain relaxation along the 

heterostructure. In the out of plane direction we perceive strong strain gradients in both 

interfaces. The gradient is stronger at the bottom interface, where a maximum value is 

found. There is also a slight gradient in the LSMO closer to the bottom interface.  

 

We have also performed a similar analysis studying superlattices with similar 

thicknesses. Next we show an example of a superlattice of 17 u.c. of La0.7Sr0.3MnO3 and 

11 u.c. of BaTiO3 with two repetitions. Having thinner LSMO layers we were able to 

probe the substrate and the first BTO layer at the same time using magnifications high 

enough for our atomic resolution analysis. 
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Figure 6.11: a) X-ray diffraction spectra and (b) X-ray reflectivity of a LSMO/BTO superlattice. c) 

Low magnification HAADF image of the superlattice showing the region where a spectrum image was 

acquired. d) EELS chemical maps showing the Ti L2,3, Ba M4,5, La M4,5 and Mn L2,3 edges integrated 

intensity. 

 

First, we perform a structural and chemical characterization of the sample. In Figure 

6.11 (a) and (b) an X-ray diffraction near the STO (002) Bragg peak and the reflectivity 

spectra are shown. Superlattice Bragg peaks around the substrate (002) reflection are 

observed. The arrows in (b) indicate again the superlattice reflections in the reflectivity 

spectra. These measurements exhibit the coherent growth of the heterostructure. The low 

magnification HAADF image in (c) shows the region where an EEL spectrum image was 

acquired (highlighted with a yellow rectangle). In Figure 6.11(d), we show the different 

chemical species in our specimen, with integrated signal maps below the Ti L2,3, Ba M4,5, 

La M4,5 and Mn L2,3 edges, where all the layers of the heterostructure are resolved. From 

this analysis, we can appreciate that the layers are flat and continuous over long lateral 

distances.  
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Figure 6.12: High magnification HAADF image of a La0.7Sr0.3MnO3 / BaTiO3 superlattice down the 

(110) direction showing the high quality epitaxial growth. 

 

Figure 6.12 shows a high magnification HAADF image of the LSMO/BTO 

superlattice. The growth is perfectly epitaxial and the different layers are fully strained to 

STO in-plane lattice parameter. Again, such strain imposes a constraint for the 

ferroelectric polarization in the BTO layer making the unit cell expand in the out-of-plane 

direction and forcing the ferroelectric polarization to align preferentially along this axis 

(221). In this image, we can appreciate how there is nearly no contrast difference between 

the LSMO and the BTO layers in the image, making it very hard to identify the interfaces. 

We will again use EELS and strain mapping to study the layers and determine the 

interfacial atomic planes.  
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Figure 6.13: High magnification EEL spectrum image of the interfaces in a La0.7Sr0.3MnO3 / BaTiO3 

superlattice. a) ADF image recorded simultaneously to the EEL spectrum image. b) La M4,5, c) Ba M4,5 and 

d) Ti L2,3 EELS intensity maps. d) RGB color mix with La in blue, Ti in red and Ba in green. Some spatial 

drift is observed. 

 

The BTO layer in the first superlattice bilayer is depicted in the high magnification 

EEL spectrum image of Figure 6.13. In (a) we show the simultaneous ADF image 

recorded with the EEL spectrum image, where some drift is observed. In Figure 6.13 (b), 

(c) and (d) we can see the different chemical maps corresponding to the La M4,5, Ba M4,5 

and Ti L2,3 edges, where a TiO2 termination is observed for both the top and bottom 

interfaces of the BaTiO3 layer. Again, there is a preferential TiO2 termination for the BTO 

layers, and both LSMO layers are terminated in La0.7Sr0.3O planes. These terminations 

may influence strongly the ferroelectricity in the BTO layer (222–224), as explained 

before.  
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Figure 6.14: HAADF image of a La0.7Sr0.3MnO3 / BaTiO3 superlattices where the contrast between the 

different layers is hardly visible. The blue arrow indicates the growth direction. b) Out of plane strain map 

from image (a) obtained using Peak Paris Analysis (66, 67) routines for Digital Micrograph. 

 

Before proceeding to measure the atomic column positions as in the trilayers, we need 

to identify the exact positions of each layer in our images. This time, we perform a strain 

analysis of the image, using the PPA plug-in for Digital Micrograph (66, 67). The result 

of this analysis is shown in Figure 6.14(b). The zero level (green/brown color) is assigned 

to the STO substrate, which we have used as a reference. The BTO layers appear much 

brighter in the strain map, denoting a high expansive strain due to the bigger lattice 

parameter of BTO. From this strain map and the EELS results, we can perfectly identify 

the position of the interfaces in our image.  

 

 

Figure 6.15: Out plane (solid symbols) and in plane (open symbols) lattice parameters profiles obtained 

measuring the A-site atomic positions directly in the HAADF image in Figure 6.14(a). This profile is 

rotated 90° with respect to Figure 6.14. The blue arrow indicates the growth direction. 
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Proceeding with the analysis, we select five different regions: one for each layer and 

another one for the substrate, in order to measure the atomic column positions for the A 

cation (Sr, La and Ba). The different layers need to be analyzed independently in order to 

obtain more accurate values for the atomic positions, since selecting regions containing 

materials with very different lattice parameters usually results in higher errors. The 

starting and finishing atomic planes for each layer have been identified using the strain 

mapping and the EEL spectrum images. Then, we use the procedure explained in chapter 

2 to measure precisely the atomic column positions directly on the images (64). The 

values observed for the different layers (averaged over 50 unit cells laterally) are shown 

in the profiles of Figure 6.15, where the out and in plane lattice parameters are depicted. 

The values obtained are very similar to the trilayer case. The in plane lattice parameter 

increases along the growth direction, which is a sign of partial relaxation during the 

heterostructure growth. The out-of-plane lattice parameters present much stronger 

gradients than in the trilayer case. We measure a strain gradient at the interface between 

the first LSMO and BTO layers, with lattice parameters changing from 3,9 Å in the 

LSMO to nearly 4,2 Å in BTO. A very interesting feature is found in the second 

LSMO/BTO bilayer. The LSMO presents a clear strain gradient with lattice parameter 

values ranging from 4,1 Å in the bottom interface to a more relaxed 3,9 Å value at the top 

end. The second BTO layer exhibits again a highly pronounced strain gradient until the 

out of plane lattice parameter reaches the 4,1 Å value corresponding to fully strained 

BTO (188, 194).  

 

Study of the ferroelectric polarization 
 

We can estimate the local polarization within the BTO layer using a model based on 

the Born effective charges (225, 226). The ferroelectric polarization is defined as the sum 

of the multiplication of the Born effective charges by the displacements of each ion in the 

unit cell from their centrosymmetric position (227, 228), as described by the next 

equation: 

 

 P(z)=
e

 
∑  m

*
N

m=1

 um (6.1) 
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where N is de number of atoms in the primitive unit cell,     is the change in the 

position vector of the mth atom,   
  is the Born effective charge and   is the volume of 

the unit cell. The Born effective charges reported for BTO are 2,83 for Ba, 5,81 for Ti and 

-1,95 and -4,73 for the O ions in the TiO2 and BaO planes respectively (226). Therefore, 

knowing the displacements of each atom from the “ideal” cubic structure one can obtain 

the ferroelectric polarization. In order to observe these structural distortions, we have 

looked at the crystalline specimen down the (110) pseudo-cubic direction, where oxygen 

atoms in the TiO2 plane are far enough from heavier atoms to be easily resolved using the 

ABF imaging mode.  

 

 

Figure 6.16: a) Raw annular bright field (ABF) image of a La0.7Sr0.3MnO3 / BaTiO3 superlattice. b) 

Magnified image, from the area highlighted with a blue rectangle in (a). The blue dashed lines denote the 

interfacial planes. c) Low noise, FFT filtered image obtained from (a) where the oxygen atoms are clearly 

visible. The inset shows a schematic of the BTO unit cell with Ba (blue), Ti (green) and O (red) atoms. 

 

The ABF image in Figure 6.16(a) shows the four layers grown on top of a SrTiO3 

substrate. Figure 6.16(b) exhibits a magnified view of the area highlighted in (a). The 

interfaces between the LSMO and BTO layers are marked by blue dashed lines. Although 

oxygen atoms are visible in this image, in order to better appreciate the position for all 

atomic columns we need to reduce the noise level using a Fourier filter mask (65). We 

find that the oxygen columns in the first planes of the BTO layer are displaced 

downwards relative to the Ti columns (i.e., towards the bottom LSMO/BTO interface). 

On the other hand, within the last atomic planes near the top, the oxygen columns are 

displaced upwards with respect to the Ti columns. Arrows mark the local polarization 
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direction resulting from this structural configuration. These observations suggest that 

somewhere through the layer there is an inversion of the polarization direction and, 

hence, a ferroelectric domain wall.  

 

In order to make a semi-quantitative estimate of the local polarization, we can use the 

low noise filtered images to measure the atomic column coordinates of all species (64) 

and calculate their displacements. However, since we are studying a projection of the 

sample down the (110) direction, we are not able to measure the oxygen columns in the 

Ba-O plane. Thus, we will have to make an approximation estimating the local 

polarization in terms of the relative displacement along the out-of-plane axis between the 

Ti and the planar O columns. Once we have the coordinates of all visible atomic columns, 

we can proceed to quantify the relative Ti-O displacement ( z), which is proportional to 

the local ferroelectric polarization (224), using the Ba sublattice as a reference, as shown 

in Figure 6.17. 

 

 

Figure 6.17: Schematic of BTO down the (110) orientation demonstrating the relative displacement 

measurement. a) Schematic showing the displacements of Ti and O from the center of the unit cell. b) 

Schematic showing the relative Ti-O displacement ( z), which is proportional to the ferroelectric 

polarization. 

 

Figure 6.18 displays the calculated relative Ti-O displacement ( z) false color maps 

for both the first and second BTO layers in the heterostructure. Each pixel in the maps 

shows the value of  z for each unit cell. Mapping the values of  z like this, we can track 
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the local polarization in a semi-quantitative fashion unit cell by unit cell. The 

displacement maps show an inhomogeneous polarization along the ferroelectric layer, 

with positive values near the bottom interface and negative values close to the top. The 

profiles on the right show the lateral average. The absolute values of  z are of the order of 

0.1 – 0.2 Å, consistent with previous studies (62, 229, 230). Our measurement indicates 

that there is a head-to-head domain wall inside the ultrathin (11 u.c.) ferroelectric layer, 

with a polarization profile which ranges from positive values in the bottom interface, to 

negative values at the top. While the shape of the domain wall is not flat, it is worth 

noting that, on average, its position lies in the middle of the BTO layer. This is the case 

for both ferroelectric layers. Although the qualitative results in both first and second 

layers are similar, the absolute values for  z are larger in the second BTO. Oxygen 

vacancies or surface reconstructions may be responsible for these high values. Also, we 

must note that these values actually are the projection of the polarization vector along the 

c axis, averaged along the thickness of the whole specimen. Therefore, we cannot 

distinguish if the displacement vector has some component parallel to the electron beam 

direction.  

 

 

Figure 6.18: a) ABF image of the LSMO/BTO superlattice with the Ti-O  z maps for the first and 

second BTO layers superimposed to the image. Each pixel of the maps corresponds to one unit cell. b) 

Averaged horizontal profiles obtained from the maps shown in (a). The error bars correspond to the 

statistical deviation after averaging laterally 50 unit cells. 
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From now on, our attention will be focused on the study of the first BTO layer, which 

is more representative of the trilayer case and therefore of the measured tunnel junctions. 

Figure 6.19 displays a more detailed  z map superimposed over the image in Figure 

6.16(c). The positive (bottom) ferroelectric domain exhibits a triangular shape, which has 

been predicted theoretically and observed previously for ferroelectric domains (198, 229, 

231). This irregular shape results in the laterally averaged profiles in Figure 6.18(b) 

exhibiting a sign change that seems to extend over several unit cells. However, the local 

width of the domain wall is much narrower. If we pay close attention to the displacement 

maps, there are regions where it takes place within a unit cell. This observation suggests 

that the domain wall may be sharp within very short lateral length scales. Indeed, if we 

analyze the displacements in small regions tracing profiles perpendicular to the domain 

wall, the sign change occurs in a very abrupt fashion. An example of this is presented in 

Figure 6.19(b), which displays how the  z gradient is more pronounced within 1-2 unit 

cells around the zero-value plane. The slope of  z gradually decreases near both 

interfaces reaching a plateau, suggesting that the polarization saturates. This behavior has 

been predicted theoretically before (224) but to the best of our knowledge this is one of 

the first experimental observations. Regarding the saturation values, we can give an 

estimate of the polarization in our system by using equation 6.1 and an averaged charge 

for the oxygen atoms in both Ba-O and Ti-O2 planes, defined as    ̅̅ ̅̅   
           

 
 

    . For a saturation displacement of          , a value of the polarization at the 

interfaces of             is obtained. This result is very close to the bulk polarization 

in BTO (         ). 
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Figure 6.19: a) Ti-O  z map from the BTO layer in Figure 6.16(c), each pixel corresponding to one unit 

cell. b) Averaged profile of the  z displacements in the direction perpendicular to the domain wall, showing 

the unit cells above and below the geometric head-to-head domain wall plane. The black line is a guide for 

the eye. The yellow arrows indicate the direction of the profile. 

 

The finding of a head-to-head ferroelectric domain wall in this system would imply a 

significant accumulation of ferroelectric bound charge at the wall, which must be 

screened by free negative charges (231–235). In undoped semiconductor ferroelectrics, 

the screening charge results from electron transfer across the forbidden energy gap, Eg, of 

the ferroelectric, which requires strong band bending until the bottom of the conduction 

band falls below the Fermi level. The creation of a charged domain wall thus involves an 

energy of         , where P0 is the equilibrium polarization at both sides of the domain 

wall. For BTO, with a            
  and an energy gap of 3.2 eV, charged domain 

walls have a large energy cost of             , which compares with the             

of the neutral domain walls. The thickness of a charged domain wall is essentially 

determined by the availability of free carriers to screen its bound charge. Thus screening 

sets a width of the barrier, which can be estimated to be of the order of the Thomas Fermi 

screening length, the length scale for charged inhomogeneities. For intrinsic BTO with an 

effective density of states at the conduction band of 10
18

 cm
-3

, the width of a charged 

domain wall can be estimated to be in the range 10 – 20 nm. It is thus particularly 

puzzling that a nanometer thick, energetically expensive head-to-head charged domain 

wall is found in the BTO tunnel barrier with a polarization vector directed in the (001) 
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crystalline orientation (which typically yields neutral domain walls). The very narrow 

width of the domain wall implies that free charges must be available to screen the 

polarization charges.  

 

 

Figure 6.20: a) Z-contrast image of the LSMO/BTO superlattice. The inset shows the titanium 

oxidation state map from the BTO layer. b) Titanium oxidation state across the BTO layer, averaged 

laterally (red squares). The blue curve represents the position of the Ti L3 edge. The origin in the x axis 

corresponds to the bottom BTO/LSMO interface. 

 

Thus, in order to understand how this head-to-head domain wall configuration is 

stable in our system, we need to analyze the electronic properties of the ferroelectric BTO 

layer. This study can be addressed through the analysis of the occupation of the Ti 3d 

band, which affects features such as the crystal field splitting in the L2 and L3 edges fine 
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structure (117). After measuring the Ti L2,3 ELNES throughout our BTO layers, we have 

obtained the Ti oxidation state using the MLLS fit method (29, 118) explained in chapter 

2. For this aim, we have used two reference spectra for bulk LaTiO3 (Ti
+3

) and BaTiO3 

(Ti
+4

) to decompose our experimental spectrum in one component for each oxidation 

state. This way, we obtain the Ti oxidation state for each pixel in a spectrum image, thus 

producing a 2D map of the Ti oxidation state across the BTO layer (110). Figure 6.20(a) 

shows an HAADF image of the superlattice, where the Ti oxidation state map obtained 

this way is superimposed on top of the ferroelectric layer. A reduction in the oxidation 

state takes place well into the BTO layer. In order to appreciate this behavior with more 

detail, we have averaged laterally the values for each pixel in the map, and the resulting 

profile is shown in Figure 6.20(b). In both interfaces the value is around the nominal +4 

value, while inside the layer, a reduction to ≈ +3.95 is observed. We also find a small 

chemical shift of the Ti L2,3 edge, shown in the blue curve in Figure 6.20(b), which also 

indicates a reduction of Ti (116). This observation results from a 5% of titanium atoms 

with a +3 oxidation state, which is equivalent to a maximum concentration of charge 

carriers of             .  

 

Discussion 

 

We have used aberration corrected STEM-EELS to study the ferroelectric polarization 

and the electronic properties in multiferroic complex oxide heterostructures. Using the 

ABF imaging mode, which is sensitive to light atoms as oxygen, we have measured the 

atomic column positions for all species in our ferroelectric layer, and we have quantified 

the relative displacement between Ti and O, which is related to the ferroelectric 

polarization. We have also studied the fine structure of the Ti L2,3 edge, quantifying the 

oxidation state, and as a result, the occupation of the Ti 3d bands. Our findings suggest 

that there is a charged head-to-head domain wall inside the ferroelectric barrier. The 

presence of such head-to-head domain wall is connected to pinning of the ferroelectric 

polarization by interface dipoles. These dipoles would result from differences of the 

bonding strength at both sides of the interface along with atomic or electronic 

reconstructions due to the symmetrical LaO termination of both manganite layers. Both 

symmetrical interface terminations together with the donor character of the LaO plane 
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help stabilizing a head-to-head domain wall. Our data proof that a confined electron gas is 

formed within the 4.4 nm thick BTO layer.  

 

We believe that these carriers are supplied by oxygen vacancies at the interfaces of the 

ferroelectric layer with the ferromagnetic LSMO layers. These vacancies may help to 

accommodate the large epitaxial mismatch between these materials and the strong strain 

gradients occurring at the BTO interfaces as shown in Figure 6.15. The presence of 

oxygen vacancies enhances the repulsion between B site cations, producing the observed 

expansion of the lattice around them (99, 236). Thus, the nucleation of oxygen vacancies 

is a mechanism that helps releasing the elastic energy stored in uniformly strained 

structures and accommodating this large lattice mismatch (237). Large concentrations of 

O vacancies in complex oxide thin films are not unusual and have been observed in 

regions under compressively strain around dislocation cores in grain boundaries in STO 

(156) and YBCO (159). As shown in Figure 6.21(a), the positively charged vacancies 

help compensate the negative polarization charges at the interfaces, contributing to 

stabilize the head to head domain wall. Furthermore, if we assume that each vacancy may 

supply one electron and that these free electrons are uniformly distributed across the BTO 

layer, screening the charged domain wall as the EELS measurements suggest, we can 

estimate an upper limit for the thickness of the domain wall of 2 nm. This result is in 

good agreement with the structural results in Figure 6.19. Notice also that for such 

electron doping, the Thomas Fermi screening length is in the range of 1 nm (218) which 

again provides the correct length scale for the width of the domain wall. It is important 

also to notice that although these levels of doping may appear high, BTO is known to 

retain its ferroelectric ground-state with charge densities in excess of            (216, 

218), as explained before. Assuming that the charge transferred from the ionized 

vacancies is about 0.05 electrons per unit cell, the carrier density for the electron gas is 

        
      , which is similar to those reported at the surface of STO single 

crystals and also at the LAO/STO interface (238). These findings lead us to think that 

charge in the form of free electrons accumulates in the region of the head-to-head domain 

wall inside the ferroelectric layer, screening the polarization discontinuity and producing 

a two-dimensional high mobility conduction channel (235). 

 

 



Discussion 

131 

 

 

Figure 6.21: a) Energy levels and band bending schematic. b) Oscillations maxima from Figure 6.6, 

identified by subtracting a triangular envelop from the experimental differential conductance curves. The 

inset shows a fit to the values expected for a triangular well. 

 

We believe that the 2DEG is the origin of the oscillations found in the magneto 

transport measurements. The charged accumulation in the domain wall can give rise to a 

band bending at the BTO which can be approximated by a potential well (see sketch in 

Figure 6.21(a)). Figure 6.21(b) shows the voltage values of the conductance maxima 

obtained subtracting a triangular envelope to the experimental curves from Figure 6.6. 

The data fit very well into to the theoretical expression corresponding to a triangular well 

potential as shown in the inset. The nature of the potential well is not completely 

understood yet and the approximation can also be done to a parabolic potential with 

similar results. 

 

In summary, we have shown that the electronic confinement of the ferroelectric 

quantum well of the head-to-head domain wall is the mechanism responsible for the 

tunneling transport in our magnetic tunnel junctions. This finding traces a new avenue for 

future device concepts in oxide electronics exploiting the electronic structure of 

ferroelectric domain walls (196). As it has been proposed, the domain walls may 

constitute the active part of the device (195). 
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Chapter 7: Summary 

 

The quest for novel functionalities in material science has often been determined by 

reducing dimensionality and designing nanostructured systems that exploit new physical 

effects. The physical phenomena occurring at these scales are ruled by the properties of 

small active regions, such as interfaces, point or extended defects, etc. In order to 

understand any underlying physics, new tools capable of analyzing these systems with 

atomic resolution and in real space are essential. The evolution of STEM-EELS since the 

development of the aberration corrector, has transformed these techniques in most 

powerful tools for material science research. In this work, we address a series of 

technologically relevant physical problems within the fields of energy, electronics and 

spintronics where state-of-the-art aberration corrected electron microscopy helps 

harnessing the macroscopic behaviour. Analyzing slight fluctuations of the atomic 

structure, composition and electronic environment within nanometric regions such as 

surfaces, grain boundaries or interfaces, we have been able to explain a number of 

physical effects establishing the link between the atomic and macroscopic worlds.  

 

Experimental Results 

 

 First, we have analyzed the formation of new superficial phases by controlled 

irradiation processes on titanium oxides, explaining how changes in the atomic 

structure and composition affect the macroscopic physical properties. 

Irradiation can result in the formation of high ordered TiO crystalline layers in 

the surface of TiO2 (109). On a different front, the irradiation of SrTiO3 single 

crystals leads to the formation of oxygen vacancies. In this case, the procedure 

induces an insulator-to-metal transition, doping the superficial titanium atoms 

and inducing surface metallic states (87, 110).  

 

 We have also combined transport measurements, the analysis of structural 

strain and chemical composition with atomic resolution and DFT calculations 
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in order to shed some light to the problem of conductivity blocking in grain 

boundaries of ionic conductors. Impedance spectroscopy measurements show 

how the width of the space charge layer at both sides of the grain boundary is 

        , much thinner than previous estimates (141). We found a strong 

Y segregation to the expansive site of the dislocation cores within the grain 

boundary, along with a reduction in the oxygen content. These chemical 

fluctuations produce a lack of stoichiometry within a range of 5 Å (one unit 

cell), as obtained from the FWHM of the EELS oxygen and yttrium 

compositional profiles. The length scales found with the microscopy study are 

in good agreement with the results from the dielectric spectroscopy 

measurements. Using DFT calculations we have been able to show how the 

presence of oxygen vacancies is intrinsic to the grain boundary, lowering by 

more than 0.1 eV/Å
2
 its formation energy. Electrons arising from the oxygen 

vacancies are captured in empty electronic states in the energy gap of the grain 

boundary, giving rise to an electrostatic potential that acts as a barrier for the 

ionic conductivity. 

 

 The high spatial resolution of aberration corrected electron microscopy allows 

the study of structural distortions using atomic resolution EEL spectrum 

images and new detectors capable of imaging light atoms. In particular, we 

have analyzed collective perturbations in the oxygen sub-lattice of complex 

oxide heterostructures and the relationship with new physical phenomena non 

present in the bulk. The analysis of superlattices composed of the Mott 

insulator LaMnO3 and the band insulator SrTiO3 have shown a correlation 

between the rotations of the BO6 oxygen octahedra and induced epitaxial strain 

controlled by the thickness of the titanate. Our findings suggest that these 

distortions are related to the presence of an interfacial metallic and 

ferromagnetic phase (29, 182). Next, we combine such manganite layers with 

ferroelectrics materials (BaTiO3) producing multiferroic tunnel junction. We 

have measured the relative Ti and O in-plane displacements ( z) in the 

ferroelectric layer, which are proportional to the polarization (224). Using this 

method, we are able to track the ferroelectric displacements unit cell by unit 

cell, obtaining the ferroelectric domain configuration. Our measurements show 
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an inversion of the polarization direction across ultra-thin ferroelectric layers, 

suggesting the presence of a head-to-head domain wall. This behavior has 

been predicted theoretically before (224) but to the best of our knowledge this 

is one of the first experimental observations. The layers exhibit strong 

polarization gradients that reach a plateau close to the interfaces, with a 

polarization value very close to the bulk material. EELS measurements have 

shown the accumulation of electrons screening the polarization bound charge 

at the domain wall and stabilizing this highly unstable charged head-to-head 

configuration. Moreover, our calculations show how a confined 2D electron 

gas with accessible electronic states is formed in the vicinity of the domain 

wall. Combining these studies with an analysis of transport measurements, we 

have explained how electronic states in the domain wall provide a mechanism 

for quantum resonant tunneling across our multiferroic heterostructure. 

 

Conclusion 

 

Throughout this thesis, we have shown how the atomic resolution analytical 

capabilities of the aberration corrected electron microscope provide a very powerful tool 

to explore minor structural distortions and slight compositional fluctuations in materials 

that can give rise to a very rich variety of physical phenomena. Minor densities of defects, 

inhomogeneous strain fields or domain walls can be now analyzed with an unprecedented 

level of detail, bridging the connection between atomistic mechanisms and electronic 

properties. The continuous development of such experimental techniques and theory 

beyond current limitations of spatial and energy resolution holds the promise of a very 

bright future for materials research in the electron microscope. Now, more than ever, the 

quest for frontiers yet to be revealed in the nanoscopic world is within reach. 
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