Dynamic transition from modelike patterns to turbulentlike patterns in a broad-area Nd:YAG laser

Eduardo Cabrera, Sonia Melle, Oscar G. Calderón, and J. M. Guerra
Departamento de Óptica, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

Received December 7, 2005; accepted January 9, 2006; posted January 25, 2006 (Doc. ID 66534)

We report the first experimental observation to our knowledge of a dynamic transition from modelike patterns to completely disordered patterns in a large-aspect-ratio Nd:YAG laser. Recordings of near-field patterns with an integration time as small as 1 ns allow us to follow the evolution of the transverse intensity profile along the output pulse of the laser. © 2006 Optical Society of America

OCIS codes: 190.4420, 140.3530.

Pattern formation and nonlinear dynamics have a great significance in many fields of research, including optics, hydrodynamics, and chemical reactions. In this context the laser has become a very useful laboratory tool to study spatial self-organization phenomena that can be observed in some of these fields. In addition, the transverse structure of the laser beam determines its spatial coherence. This property can be of great importance when broad-area lasers are needed, usually in high-power applications, as can be found in laser pumping, free-space communication, or medicine. In particular, Nd:YAG lasers have been traditionally used in these types of applications thanks to their high efficiency.

There have been two main strategies to study transverse patterns in lasers. If mainly the boundary conditions impose the geometry of the field, an appropriate combination of empty cavity modes can be used to reproduce the spatial dynamics. However, if bulk parameters and nonlinearities dominate pattern formation, the system can exhibit spatiotemporal chaotic dynamics and, consequently, a very rich and complex transverse structure. The operation regime strongly depends on two parameters: the Fresnel number and the frequency separation between transverse modes. The Fresnel number is the aspect ratio between the aperture area and the length of the cavity $F = (b/2)^2/\lambda L$ and roughly measures the number of modes that can oscillate in the laser cavity. For our experimental setup the wavelength is $\lambda = 1.06 \mu m$, the transverse size $b = 6 \text{ mm}$, and the cavity length $L = 17 \text{ cm}$, so the Fresnel number takes the value $F = 50$. Frequency separation between transverse modes, $\Delta v_T = c/(2\pi \lambda)(\cos^{-1}1-(L/R))$, evaluates the strength of the interaction among these modes. Here $R = 10 \text{ m}$ is the radius of the concave mirror. In our case $\Delta v_T = 30 \text{ MHz}$, while the width of the homogeneous line is of the order of 100 GHz. Thus, strong interaction among transverse modes takes place.

On the other hand, transverse dynamics in class B lasers has been studied mainly by looking at average patterns. In the case of vertical-cavity surface-emitting lasers (VCSELs) the extremely fast dynamics makes it very difficult to record instantaneous snapshots of the intensity profile. Until now, only 1D streak cameras have been able to follow such a fast evolution in semiconductor lasers, but no 2D time-resolved measurements have been done. In the case of CO$_2$ lasers, the instantaneous intensity spatial profile has been recorded along the pulse. A bunch of bright peaks randomly distributed in the transverse cross section appears from the beginning of the pulse.

In Nd:YAG lasers, transverse mode dynamics was studied by Hollinger et al. in a ring resonator. By increasing the Fresnel number of the resonator they found a transition from stable to periodic, quasiperiodic, and chaotic temporal behavior of the laser. Instantaneous transverse patterns of a Q-switched Nd:YAG laser were measured for a stable and for an unstable resonator configuration. In Ref. 15 the Gaussian profile of the beam was selected by the system in the stable configuration along the whole evolution of the pulse, while the unstable resonator caused the growth of a ring-shaped profile. However, neither disordered patterns nor high-order modes were found in these configurations.

In this Letter we report time-resolved measurements of transverse dynamics in a pulsed custom-made Nd:YAG broad-area laser. We have seen how the pattern initially grows under the influence of boundary conditions so that modelike patterns appear. After that, nonlinearities of the medium govern the evolution, and the ordered structures are destabilized toward a highly disordered pattern, which cannot be described by cavity modes. The time needed by the system to reach this regime depends on pumping. To the best of our knowledge, this is the first observation of a dynamic transition of a laser pattern from boundary-controlled to bulk-controlled regimes. Numerical integration of Maxwell–Bloch equations has been developed, showing qualitative agreement with the experimental results.

The laser is an air-cooled, low-pulse-energy (=50 mJ) flashlamp-pumped prototype (see Ref. 16 for a detailed description). The pumping geometry imposes an anisotropy that selects a Cartesian symmetry instead of circular symmetry. A nonpolarizing beam splitter (50:50) was placed behind the output.
OPTICS LETTERS / Vol. 31, No. 8 / April 15, 2006

Let us analyze the evolution of the pattern along the pulse for the lowest pump we can achieve (2.7 times above threshold). During the first steps of the emission, this behavior remains during the rest of the output pulse.

Increasing the pump injected into the system allows higher-order modes to overcome diffraction losses and thus to appear. This can be seen in Figs. 2(a) and 2(b), which show characteristic intensity profiles recorded for a time delay of 8 μs and a pump 4 times above threshold. Another consequence of this higher pumping is that instabilities destroy the order of the structures faster, reducing the time of the boundary-controlled regime [see Fig. 2(c)]. The lack of exact repetition of the pulses does not allow us to measure the transition time from order to disorder precisely. However, while the typical time delay to find turbulent-like patterns was 40 μs for the lowest pumping, the pattern shown in Fig. 2(c) was taken with 23 μs of delay from the beginning of the output pulse. For the highest pump we can achieve (5.4 times above threshold), no ordered patterns were observed for any time delay. The theoretical analysis has been performed by means of two-level semiclassical Maxwell–Bloch equations, with proper pumping and loss profiles. Adiabatic elimination of the electric polarization has been done to handle the system of equations numerically. In our system, time decay constants for the electric field, electric polarization, and inversion of population are, respectively \(\kappa = 1.4 \times 10^8 \text{s}^{-1}, \quad \gamma_1 = 4 \times 10^{11} \text{s}^{-1}, \quad \gamma_2 = 4.35 \times 10^9 \text{s}^{-1}, \) which makes the adiabatic approximation justified. Therefore there are the equations are the following:

\[
\frac{\partial E}{\partial \tau} = i a \Delta \lambda E + \left(\frac{D}{1 + i \delta - \eta} \right) E, \tag{1}
\]

Increasing the pump injected into the system allows higher-order modes to overcome diffraction losses and thus to appear. This can be seen in Figs. 2(a) and 2(b), which show characteristic intensity profiles recorded for a time delay of 8 μs and a pump 4 times above threshold. Another consequence of this higher pumping is that instabilities destroy the ordered structures faster, reducing the time of the boundary-controlled regime [see Fig. 2(c)]. The lack of exact repetition of the pulses does not allow us to measure the transition time from order to disorder precisely. However, while the typical time delay to find turbulent-like patterns was 40 μs for the lowest pumping, the pattern shown in Fig. 2(c) was taken with 23 μs of delay from the beginning of the output pulse. For the highest pump we can achieve (5.4 times above threshold), no ordered patterns were observed for any time delay. The theoretical analysis has been performed by means of two-level semiclassical Maxwell–Bloch equations, with proper pumping and loss profiles. Adiabatic elimination of the electric polarization has been done to handle the system of equations numerically. In our system, time decay constants for the electric field, electric polarization, and inversion of population are, respectively \(\kappa = 1.4 \times 10^8 \text{s}^{-1}, \quad \gamma_1 = 4 \times 10^{11} \text{s}^{-1}, \quad \gamma_2 = 4.35 \times 10^9 \text{s}^{-1}, \) which makes the adiabatic approximation justified. Therefore there are the equations are the following:

\[
\frac{\partial E}{\partial \tau} = i a \Delta \lambda E + \left(\frac{D}{1 + i \delta - \eta} \right) E, \tag{1}
\]
the pulse excitation of the lamps. Pumping was simulated by a function approximating the pumping profile. Likewise, the temporal form represents the pumping parameter. To reproduce the diffraction coefficient placed in the field equation and is measured by the transverse Laplacian term in the field equation.

Light diffraction is usual rescaled detuning between the atomic line center and the cavity frequency. In our experimental setup there is no element in the registered structures, a detuning value as small as \(\gamma_{\text{rescale}} \) allows us to approach the zero detuning. In any case, simulations have also been observed [see Figs. 3(a) and 3(b), respectively], although stripelike modes and more complex spatial distributions found in the experiments have not been obtained. This could be explained by the strong influence of the boundary conditions used in our simulations, which do not allow the appearance of this kind of mode. In the turbulent regime the patterns present smaller structures [see Fig. 3(c)], as we observed in the experiments. We have also corroborated that the lifetime of the boundary-controlled regime decreases for higher pumping. These simulations results reproduce the experimental findings with outstanding qualitative agreement.

In conclusion, we have observed for the first time a dynamic transition of laser patterns from a boundary-controlled to a turbulent regime. To do that, we measured instantaneous patterns with a time resolution of a few nanoseconds at various times along the pulse. Coexisting latticelike and stripelike modes appear at the beginning of the pulse. Simulations based on Maxwell–Bloch equations reproduce the main features of the experimental results.

We thank P. Hoess and J. Alonso for technical support. This work was supported by Project BFM2003-06292 (Spain). E. Cabrera’s e-mail address is ecabrera@fis.ucm.es.

References

\[
\frac{\partial D}{\partial \tau} = - \gamma \left(D - R + \frac{|E|^2 D}{1 + \delta^2} \right). \quad (2)
\]

\(E \) and \(D \) are the dimensionless slowly varying envelopes of the electric field and of the population inversion, respectively; \(\gamma = \gamma_{\text{rescale}} / \kappa \), \(\delta = (\omega_{21} - \omega_{21}) / \gamma_{\perp} \) is the usual rescaled detuning between the atomic line center and the cavity frequency. Light diffraction is taken into account by means of the transverse Laplacian term in the field equation and is measured by the diffraction coefficient \(\alpha = c^2 / (2 \omega_{21} k b^2) \), where \(b \) is the spatial transverse size of the laser. \(\Delta^2 = \partial_x^2 + \partial_y^2 \) is the transverse Laplacian, where \(x \) and \(y \) are normalized with the spatial scale \(b \). The time \(\tau \) is normalized versus the electric field decay rate \((\tau = k \eta) \). \(\eta(\tau, x, y) \) represents the pumping parameter. To reproduce the experimental conditions, we use a square spatial pumping profile. Likewise, the temporal form of the pumping was simulated by a function approximating the pulse excitation of the lamps. \(\eta(x,y) \) takes into account the spatial dependence of the losses.

In our experimental setup there is no element introduced to select the detuning value. We can roughly estimate this value by using the well-known results of the stability analysis of the nonlasing solution for the case of a laser with infinite transverse size: \(k_c = \sqrt{\delta / \alpha} \), where \(k_c \) is the wavenumber with maximum growth at the first laser threshold. According to this expression and considering the characteristic size of the registered structures, a detuning value as small as \(\delta = 0.01 \) is obtained. So small a value will allow us to simplify the numerical calculations just by taking a zero detuning. In any case, simulations have also been developed for different detuning values close to the previous one, showing no significant changes in the spatio-temporal dynamics. Thus only the results with zero detuning are presented.

Figure 3 shows three representative instantaneous simulated patterns. In agreement with the experiment, it is found that patterns corresponding to the beginning of the pulse show highly ordered structures, whereas disordered patterns emerge for later times. Flowerlike modes and latticelike modes have been observed [see Figs. 3(a) and 3(b), respectively], although stripelike modes and more complex spatial distributions found in the experiments have not been observed. According to this result, these simulations reproduce the experimental findings with outstanding quantitative agreement.

We thank P. Hoess and J. Alonso for technical support. This work was supported by Project BFM2003-06292 (Spain). E. Cabrera’s e-mail address is ecabrera@fis.ucm.es.