Dark Matter & Dark Energy from the solution of the strong-CP problem

Silvio Bonometto
Dept. Physics G.Occhialini
Milano-Bicocca

In collaboration with
Roberto Mainini
Loris Colombo

Madrid - September 2005

Mainini & Bonometto 2004 PRL 93, 121301
Topics:

A particle model yielding Dark Matter & Dark Energy and solving the strong—CP problem (Dual Axion Model)

Dynamical & Coupled Dark Energy models, fitted to WMAP data

Growth of spherical perturbations within Coupled Dark Energy model

Predictions on fluctuation growth vs data on galactic satellites

General conclusions
of Cosmological Parameters

N(photons)/N(baryons)
Density/Critical Density
CDM Density/Baryon density

baryogenesis

geometry

SCDM: these parameters

\[\rho_{\text{dm}} \sim \rho_b \]
A puzzle?

LCDM cosmology
1 extra parameter: Matter density/DE density

Dynamical DE (+ 1 parameter)
\[\rho_{\text{vac}_o} \approx 10^4 T_0^4 \]
\[\rho_{\text{vac}_{ew}} \approx T_{ew}^4 \]
\[\rho_{\text{vac}_o} / \rho_{\text{vac}_{ew}} = \]
\[= 10^4 (10^{-4} \text{ eV} / 10^{11} \text{ eV})^4 = 10^{-56} \]

Coupled DE (+2 parameter)
Underlying ideology: Should astrophysics put limits on extra parameters new physics discovered and constrained

Even better: (new) physics requires DE & DM, setting their parameters in the fair range: A MICROPHYSICAL WAY OUT FROM FINE TUNING & COINCIDENCE

An alternative view (Kolb, Riotto, Matarrese, …2005 see also Buckert 1980, Ellis 1990 …)

\[g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \]

standard \(\eta_{\mu\nu} \) defined by a(\(\tau \)) & \(\kappa \) coming from ass.

state eqs. (\(p = w\rho \)); \(h_{\mu\nu} \) initially linear, then developing non-linearities

new \(h_{\mu\nu} \) initially linear

when extreme non-linearities developed backg. state eqn modified

Problems addressed by added parameters
The Dual-Axion Model (DAM)
A microphysical solution

belongs to the family of cDE models

but same # of parameters as SCDM

1 par. less than LCDM
2 par. less than dDE models
3 par. less than standard cDE models

DM & DE from the same scalar field
(exploit better the field in PQ approach)

strong-CP problem solved

fair fit to WMAP data

+, hopefully, solution of some LSS problems
Non-perturbative effects related to the vacuum structure in QCD yield a CP-violating term in L_{QCD}:

$$L_\theta = \frac{\alpha_s}{2\pi} \theta G \cdot \tilde{G}$$

Gluon field tensor and its dual

$d_n \approx 5 \cdot 10^{-16} \theta_{eff} e \cdot cm < 10^{-25} e \cdot cm$

Neutron electric dipole moment

Experimental limits on electric dipole moment

$\theta < 10^{-10}$

Why θ is so small?
Peccei-Quinn solution and the axion

Peccei & Quinn 1977

PQ idea: CP-violating term suppressed by making θ a dynamical variable. Potential drives it to zero.

- Additional global $U(1)_{PQ}$ symmetry in SM.

$$\Phi = \frac{\phi}{\sqrt{2}} e^{i\theta} \quad \text{with NG potential } \quad V(|\Phi|) = \lambda [\phi^2 - F_{PQ}^2]^2$$

- $U(1)_{PQ}$ is spontaneously broken at the scale F_{PQ}.

- θ-parameter is now the NG boson due to sym.br. : the axion.

Weinberg 1978; Wilczek 1978
- CP-violating terms generate a potential for the axion which acquires a mass $m(T)$ (chiral symmetry break).

From instantonic calculus:

$$V(\theta) = m^2 F_{PQ}^2 (1 - \cos \theta) \approx \frac{1}{2} m^2 F_{PQ}^2 \theta^2$$

$$m(T \gg \Lambda_{QCD}) = 0$$

$$m(T \ll \Lambda_{QCD}) \propto F_{PQ}^{-1}$$

- F_{PQ} is a free parameter

- Cosmological and astrophysical constraints require:

$$10^{11} < F_{PQ} / \text{GeV} < 10^{12} \quad \rightarrow \quad 6 \cdot 10^{-6} < m_{T=0} / \text{eV} < 2 \cdot 10^{-5}$$
Axion cosmology

- Equation of motion ($\theta \ll 1$):
 \[\ddot{\theta} + 2\frac{\dot{a}}{a}\dot{\theta} + a^2 m^2(T)\theta = 0 \]

- Coherent oscillations for $m(T) > 2H$

- Oscillations damped by cosmic expansion

- **Axions as Dark Matter candidate**

Averaging over cosmological time $\langle E_{\text{kin}} \rangle = \langle E_{\text{pot}} \rangle$

\[p_\theta = \langle E_{\text{kin}} \rangle - \langle E_{\text{pot}} \rangle = 0 \]

\[\dot{\rho}_\theta = \left(\frac{\dot{m}}{m} - 3\frac{\dot{a}}{a} \right)\rho_\theta \Rightarrow \rho \propto a^{-3}m(T) \]

\[T \ll \Lambda_{\text{QCD}} \Rightarrow \dot{m} = 0 \Rightarrow \rho_\theta \propto a^{-3} \]

Kolb & Turner 1990
A single field to account for both DM and DE?

NG potential \implies Tracker quintessence potential $V(|\Phi|)$ with a complex scalar field

$|\Phi| = \phi \sqrt{2}$ no longer constant but evolves over cosmological times

PQ model

\[
<\phi> = F_{PQ}
\]

\[
m(T << \Lambda_{QCD}) \approx F_{PQ}^{-1}
\]

Angular oscillations still axion-DM; radial slow-roll yields DE

Dual-Axion Model

\[
<\phi> \neq \text{cost}
\]

\[
m(T << \Lambda_{QCD}) \propto \phi^{-1}
\]

variations over cosmological times only
LAGRANGIAN THEORY

\[
\mathcal{L} = \sqrt{-g} \left\{ \frac{1}{2} \left[\partial^\mu \phi \partial_\mu \phi + \phi^2 \partial^\mu \theta \partial_\mu \theta \right] - V(\phi) - m^2 (T, \phi) \phi^2 (1 - \cos \theta) \right\}
\]

AXION

\[
\dot{\rho}_\theta + 3 \frac{\dot{a}}{a} \rho_\theta = -C(\phi) \phi \rho_\theta
\]

DARK ENERGY

\[
\ddot{\phi} + 2 \frac{\dot{a}}{a} \dot{\phi} + a^2 V'(\phi) = C(\phi) \rho_\theta a^2
\]

\[
\dot{\rho}_\phi + 3 \frac{\dot{a}}{a} (\rho_\phi + p_\phi) = C(\phi) \phi \rho_\theta
\]

Amendola 2000, 2003

COUPLED DE MODEL

time dependent coupling \(C(\phi) = 1/\phi \)
Background evolution

We use SUGRA potential \(V(\phi) = \frac{\Lambda^{4+x}}{\phi^x} e^{4\pi G \phi^2} \)

\(\Phi \)

\(\Omega_{DM} \approx 10^{10} GeV \)

Note: in a model with dynamical DE (coupled or uncoupled) once \(\Omega_{DM} \) is assigned \(\Lambda \) can be arbitrarily fixed.

Here \(\Lambda \) is univocally determined
Background evolution

\[\dot{\phi} + 2a \frac{\dot{a}}{a} \dot{\phi} + a^2 \phi V'(\phi) = \phi \dot{\theta}^2 \]

coupling term \(\phi \dot{\theta}^2 \gg a^2 V' \)

\(\phi \) settles on different tracker solution
Background evolution

After equivalence kinetic energy of DE non-negligible, although matter era
axion mass

\(\Phi \) evolution causes axion mass to depend on scale factor
Rebounce at \(z=10 \) (sugra), critical for structure formation?

Maccio' et al 2004, PRD 69, 123516
Density fluctuations: linear evolution

DM and baryons fluctuations: 2 coupled Jeans’ equations:

\[
\begin{align*}
\ddot{\delta}_{DM} + \left(\frac{\dot{a}}{a} - C(\phi)\dot{\phi} \right) \dot{\delta}_{DM} &= 4\pi \left(G^* \rho_{\text{DM}} \delta_{DM} + G \rho_b \delta_b \right) \\
\ddot{\delta}_b + \frac{\dot{a}}{a} \dot{\delta}_b &= 4\pi G \left(\rho_{\text{DM}} \delta_{DM} + \rho_b \delta_b \right)
\end{align*}
\]

modified friction term
modified dynamical term

\[
G' = G \left(1 + \frac{4}{3} \beta^2(\phi) \right)
\]
Density fluctuations: linear evolution

Red: dual axion $C(\phi) = 1/\phi$
Blue: Coupled DE $C = \text{cost} = \langle C(\phi) \rangle$
Black: ΛCDM

Differences from LCDM:
- objects form earlier
- baryon fluctuations $<$ DM fluctuations until recently
General conclusions on DAM

- One (complex) scalar field -> both DM & DE

- Fair DM & DE proportions from one par: $\Lambda/\text{GeV} \sim \text{some } 10^{10}$

- Strong CP problem solved

- DM-DE coupling established ($C = 1/\phi$)

- Fair growth of matter density fluctuations

- Fine tuning & coincidence problems eased
Fit to WMAP data

Best fit parameters:

<table>
<thead>
<tr>
<th>Uncoupled SUGRA</th>
<th>SUGRA with C=cost</th>
<th>SUGRA with C=1/φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$<x>$</td>
<td>σ_x</td>
</tr>
<tr>
<td>Ω_0h^2</td>
<td>0.025</td>
<td>0.001</td>
</tr>
<tr>
<td>$\Omega_{dm}h^2$</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>h</td>
<td>0.63</td>
<td>0.06</td>
</tr>
<tr>
<td>τ</td>
<td>0.21</td>
<td>0.07</td>
</tr>
<tr>
<td>n_s</td>
<td>1.04</td>
<td>0.04</td>
</tr>
<tr>
<td>A</td>
<td>0.97</td>
<td>0.13</td>
</tr>
<tr>
<td>Log Λ</td>
<td>3.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

No real constraint on λ

- Main differences at low l
- χ^2_{eff} from 1.064 (uncoupled SUGRA) to 1.071 (C=1/φ)
- SUGRA with C=1/φ $h=0.93\pm0.05$
- Better χ-square for u.c.SUGRA than for LCDM

Fit performed allowing for arbitrary λ, -> DAM λ within 2-σ
Fit to WMAP data

Results obtained with MCMC technique
1 and 2-sigma confidence levels

notice how
\(\lambda = \log(\Lambda/\text{GeV}) \)
almost
unconstrained

Uncoupled SUGRA dDE cosmology
A similar plot for $1/\phi$ coupled cosmologies

all parameters (Λ in particular) strongly constrained
Post–linear evolution of density fluctuation
The spherical “top-hat” collapse

Gravitational instability:

galaxies, groups, clusters from small density perturbation growth

\[\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}} \quad (\rho = \text{density field}) \]

Perturbation evolution:

linear theory until \(\delta \ll 1 \)

\[\ddot{\delta} + 2 \frac{\dot{a}}{a} \dot{\delta} = 4\pi G \rho \delta \quad \text{(Jeans' eq.)} \]

But real objects must have \(\delta \gg 1 \)

Insight into non-linear behavior from spherical inhomogeneity growth

Also used in PS theory -> fair halo MF in sim.

fair cluster MF, other ingred. to get gal.MF
Post–linear evolution of density fluctuation: The spherical “top-hat” collapse

Top-hat over-density in SCDM:
Initially expanding with Hubble flow, then
(i) separating from background, (ii) reaching top expansion, (iii) collapsing to 0

\[\dot{R} = - \frac{4\pi}{3} G \bar{\rho}_m (1 + \delta_m) R \]

…as a closed FRW universe

Extra assumption: Virial equilibrium stopping (no heat release)
Assuming mass conservation ….

Virial theorem

\[2T + U = 2T + \frac{3}{5} G \frac{M^2}{R} = 0 \]

Energy conservation between turn-around and virialization

\[U_{ta} = U_{vir} + T_{vir} = \frac{1}{2} U_{vir} \]

\[R_{vir} = \frac{1}{2} R_{ta} \]

Density contrast

\[\Delta_{vir} = \frac{\rho_m}{\rho_{cr}} \approx 178 \]
A graphical description of the evolution of a system over time, assuming collapse to occur at present time.
Post–linear evolution of density fluctuation:
The spherical “top-hat” collapse

Top-hat overdensity in ΛCDM and uncoupled DE models:
Assuming an homogeneous DE field…..

$$\ddot{R} = -\frac{4\pi}{3} G [\overline{\rho}_m (1 + \delta_m) + \overline{\rho}_{DE} (1 + 3w_{DE})] R$$

Virial radius
…again from virial theorem and energy conservation but….

$$R_{\text{vir}} \neq \frac{1}{2} R_{\text{ta}}$$

Density contrast
no longer constant in time

Mainini, Macciò & Bonometto 2003, New Astron., 8, 173
Coupled Dark Energy (cDE)
Basic equations

Spatially flat FRW universe with:
baryons, radiation, cold DM and DE (scalar field φ with potential V(φ))

Friedmann eq. \[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi}{3} G (\rho_r + \rho_b + \rho_c + \rho_{DE}) a^2
\]

Continuity equations:
Interaction DM-DE parametrized by \[C = \sqrt{16\pi G / 3\beta} \]

\[
\dot{\rho}_{DE} + 3 \frac{\dot{a}}{a} (1 + 3 w_{DE}) \rho_{DE} = -C \rho_c \dot{\phi} \quad \text{or} \quad \dot{\phi} + 2 \frac{\dot{a}}{a} \dot{\phi} + a^2 V, \phi = C \rho_c a^2
\]

\[
\dot{\rho}_c + 3 \frac{\dot{a}}{a} \rho_c = -C \rho_c \dot{\phi} \quad \Rightarrow \quad \rho_c \propto a^{-3} e^{-C\phi}
\]

\[
\dot{\rho}_b + 3 \frac{\dot{a}}{a} \rho_b = 0
\]

\[
\dot{\rho}_r + 4 \frac{\dot{a}}{a} \rho_r = 0
\]

Usual eqs. for baryons and radiation
Coupled Dark Energy
Coupling effects: modified DM dynamics

- DM particle mass variation
 \[\rho_c \propto a^{-3} e^{-C\phi} \Rightarrow m \propto e^{-C\phi} \]

- Violation of equivalence principle
 \[\dot{p} = 0 \Rightarrow \ddot{x} + \frac{\dot{m}}{m} \dot{x} = 0 \]

- Newtonian interactions:
 DM-DM particles: effective gravitational constant
 \[G^* = G\left(1 + \frac{4}{3} \beta^2\right) = G\gamma \]
 DM-baryons or baryons-baryons: ordinary gravitational constant
Coupled Dark Energy (cDE)
Coupling effects: DM-baryons bias

From linear theory:
DM and baryons density fluctuations described by 2 coupled Jeans’ equations:

\[
\ddot{\delta}_b + \frac{\dot{a}}{a} \dot{\delta}_b = 4\pi \left(G\rho_c \delta_c + G\rho_b \delta_b \right) a^2 \\
\ddot{\delta}_c + \left(\frac{\dot{a}}{a} - C\dot{\phi} \right) \dot{\delta}_c = 4\pi \left(G^* \rho_c \delta_c + G\rho_b \delta_b \right) a^2
\]

Linear bias
\[
\delta_b = b \delta_c
\]

N-body simulations indicate that the bias persists also at non-linear level
Macciò, Quercellini, Mainini, Amendola & Bonometto 2004, Phys.Rev.D 69, 123516
Spherical collapse in cDE models

Start with:

- DM and baryons *top-hat* fluctuations of identical radius $R_{TH,i}$ expanding with Hubble flow

- Fluctuation amplitudes in DM and baryons set by linear theory:

 $\delta_b = b \delta_c$

 \[\delta_b = b \delta_c \]

then, consider

set of concentric shells with radii R_n^c (DM) R_n^b (baryons)

\[R_1^{c,b} < R_2^{c,b} < \ldots < R_{TH,i} < \ldots < R_n^{c,b} \]

initial conditions:

\[R_n^c = R_n^b \]

\[\frac{\dot{R}_n^c}{R_n^c} = \frac{\dot{R}_n^b}{R_n^b} = \frac{\dot{a}}{a} \]
Spherical collapse in cDE models:
Time evolution of concentric shells

From $T_{\nu, \mu} = 0$, using comoving radii and

\[b_n = R_n^b / a \quad \text{and} \quad c_n = R_n^c / a \]

\[\dot{b}_n = -\frac{\dot{a}}{a} b_n - \frac{4\pi}{3} G\left[\rho_c \delta_c + \rho_b \delta_b\right] a^2 b_n \]

\[\ddot{c}_n = -\left(\frac{\dot{a}}{a} - C\phi\right) \dot{c}_n - \frac{4\pi}{3} \left[G^* \rho_c \delta_c + G \rho_b \delta_b \right] a^2 c_n \]

\[\rho_c = \bar{\rho}_c (1 + \delta_c) \]
\[\rho_b = \bar{\rho}_b (1 + \delta_b) \]
\[\rho_{DE} = \bar{\rho}_{DE} \]

Eqs. in physical coordinates

Usual Friedmann-like equation for baryon shells

\[\ddot{R}_n^b = -\frac{4\pi}{3} G\left[\rho_c + \rho_b + \rho_{DE} (1 + 3w_{DE})\right] R_n^b \]

Modified equation for DM shells

\[\ddot{R}_n^c = C\phi \dot{R}_n^c - C\phi \frac{\dot{a}}{a} R_n^c - \frac{4\pi}{3} G\left[\bar{\rho}_c (1 + \gamma\delta_c) + \rho_b + \rho_{DE} (1 + 3w_{DE})\right] R_n^c \]
Spherical collapse in cDE models:
Time evolution of concentric shells

- DM fluctuation expands more slowly and reach turn-around earlier
- Baryons contraction at different times for different layers
- Baryons gradually leak out from the fluctuation bulk

As a consequence..... **baryon component deviates from a top-hat geometry**
Spherical collapse in cDE models
Density profiles

- Top-hat geometry kept for DM
- Deviation from a top-hat geometry for baryons outside R_{TH}
- Perturbation also in material outside the boundary of fluctuation:
 outside R_{TH} baryon re-infall fastened by greater DM density
Virialization in cDE models

- Slower gravitational infall for baryons: outer layers of halo rich of baryons

- Gradual re-infall of external baryons onto DM-richer core:
 DM layers, initially outside fluctuation, infall with baryons

- DM / baryon ratio however increased

 \[
 \text{No virialization with all the materials of original fluctuation – and only them}
 \]

How to define virialization in cDE models?

1 - Only materials within top-hat considered: escaped baryon fraction neglected
2 - All materials inside original fluctuation plus intruder DM considered
 but........any intermediate choice also allowed
Virialization in cDE models

Our choice: Only materials within top-hat considered: escaped baryon fraction neglected

Virialization condition:

$$2T(R_{TH}) = R \frac{dU(R_{TH})}{dR}$$

Kinetic and potential energies:

$$T(R_{TH}) = T^c(R_{TH}) + T^b(R_{TH}) = \frac{1}{2} \int dm \dot{r}^2 + \frac{1}{2} \int dm_b \dot{r}^2$$

$$U(R_{TH}) = U^c(R_{TH}) + U^b(R_{TH}) = \int dm \left[\Phi_c(r) + \Phi_b(r) + \Phi_{DE}(r) \right] + \int dm_b \left[\Phi_b(r) + \Phi_c(r) + \Phi_{DE}(r) \right]$$

Potential energy made of three terms: self-interaction, mutual interaction, interaction with DE

$$\Phi_i = -\frac{4\pi}{3} G \bar{\rho}_i (1 + \delta_i) r^2 \quad i = c, b, DE \ ; \delta_{DE} = 0$$

$$\Phi_c = -\frac{4\pi}{3} G \bar{\rho}_c (1 + \gamma \delta_c) r^2 \quad \text{DM-DE energy exchange for fluctuation described by } G^* = \gamma G$$
Virialization in cDE models

Performing integrals...

\[U^c (R_{TH}) = \int dm_c \left[\Phi^c_c (r) + \Phi^b_b (r) + \Phi^c_{DE} (r) \right] = -\frac{3}{5} G \frac{M^c_c + \gamma \Delta M^c_c + M^b_b}{R_{TH}} - \frac{4\pi}{5} GM^c_c \rho^c_{DE} R_{TH}^2 \]

\[U^b (R_{TH}) = \int dm_b \left[\Phi^b_b (r) + \Phi^c_c (r) + \Phi^c_{DE} (r) \right] = -\frac{3}{5} G \frac{M^b_b + M^c_c}{R_{TH}} - \frac{4\pi}{5} GM^b_b \rho^c_{DE} R_{TH}^2 \]

\[T^c (R_{TH}) = \frac{1}{2} \int dm_c \dot{r}^2 = \frac{3}{2} \frac{M^c_c}{5} \dot{R}^2 \]

... but different baryons layers have different growth rates

\[\frac{\dot{r}}{r} = \frac{\dot{R}}{R} \text{ used} \]

not valid for \(T^b (R_{TH}) \)

\[T^b (R_{TH}) = \frac{1}{2} \int dm_b \dot{r}^2 \approx \sum_n T^b_n = \sum_n \frac{1}{2} M^b_n (\dot{R}^b_n)^2 \]

for all \(R^b_n < R_{TH} \)

Final density contrast

\[\Delta_{\nu} = \frac{\Omega^b_b - \Omega^b_\nu}{\Omega^c_c} \]

\[\Omega^b_b = 0.25, \Omega^b_\nu = 0.05 \]

\[\Omega^b_b = 0.21, \Omega^b_\nu = 0.04 \]
Spherical collapse in cDE models: Escaped baryon fraction

- Barion fraction f_b outside R_{TH} at virialization:

$$20\% \leq f_b \leq 58\% \quad \text{for} \quad 0.1 \leq \beta \leq 0.3$$

- Mild dependence on scale Λ

Preliminary result: RP potentials causes just minor quantitative shifts
Conclusions on spherical growth

Spherical top-hat collapse model in cDE theories:

Ambiguity of definition of halo virialization:
hard comparing simulations or data
with PS (or similar) predictions

But…indepdently of the way how virialization is defined:

1 - Only materials within top-hat considered: escaped baryon fraction neglected
2 - All the materials inside the original fluctuation plus intruder DM considered
(or any intermediate choice)

Final virialized system is richer of DM
EVEN MUCH RICHER ….. IF OUTER LAYERS STRIPPED
DM-baryons segregation during spherical growth:
a fresh approach to deal with quite a few cosmological problems

large scale: baryon enrichment of large clusters?

intermediate scale: lost baryonic materials as intra-cluster light?
 (X-ray, EUV excess emission problem)

small scale: systems likely to loose their outer layers because of close encounters with heavier objects
 (missing satellite problem ?)
ANDROMEDA SATELLITES
Where are the missing galaxy satellites?

2 solution: missing satellites did not form
missing satellites are there, but invisible...
Bullock, Weinberg & Kravtsov 2002

PopIII stars reionize the Universe at $z \sim 8$. Gas infall in low-mass halos is suppressed after reionization.

Working only for $z(\text{reion}) \sim 8$. If reionization earlier mechanism fails (Maccio’ et al 2005).

$\tau \sim 16$ requires $z(\text{reion}) \sim 18$.

MECHANISM NEEDED TO REMOVE BARYONS FROM SMALL HALOS.
OTHER MECHANISMS TO PRODUCE DM-ENRICHED SATELLITES (early SNe to blow out gas?)

OTHER EVIDENCES OF DM-BARYON SEGREGATION ON GREATER SCALES
e.g. THE L-T CLUSTER PROBLEM

IN THIS LAST CASE
ASTROPHYSICAL SOLUTIONS PROPOSED
THEIR EFFICIENCY STILL DISPUTED

DM-DE COUPLING PROVIDES MECHANISM FOR BARYON-DM SEGREGATION

AN EVIDENCE IN FAVOR OF COUPLING WITHIN THE DARK SECTOR?
Spherical growth with $1/\phi$ coupling to be studied

Simulations of cDE cosmologies urgently required

Still many problems in the dark